1-20 of 317

Search Results for isothermal fatigue testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2000
Fig. 28 Schematic hysteresis loops encountered in isothermal creep-fatigue testing. (a) Pure fatigue, no creep. (b) Tensile stress hold, strain limited. (c) Compressive stress hold, strain limited. (d) Tensile and compressive stress hold, strain limited. (e) Tensile strain hold, stress More
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002413
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the isothermal fatigue of solder materials. It discusses the effect of strain range, frequency, hold time, temperature, and environment on isothermal fatigue life. The article provides information on various isothermal fatigue testing methods used to assess...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue...
Image
Published: 01 January 2000
Fig. 29 Creep-fatigue interaction effects on isothermal cyclic life of AISI type 304 stainless steel tested in air at 650 °C (1200 °F), normal straining rate of 4 × 10 −3 s −1 . After Ref 65 More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... these components are subjected to a similar combination of creep, high-temperature stresses, and low cycle fatigue, particular design conditions are not as sensitized as other turbines, and as-HIP material filled this role very well. In addition to costing less than extruded and isothermally forged (E + I) powder...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002391
EISBN: 978-1-62708-193-1
.... A distinction must be drawn between isothermal high-temperature fatigue as cyclic straining under constant nominal temperature conditions versus TMF. As such, isothermal fatigue (IF) can be considered a special case of TMF. In most the deformation and fatigue damage under TMF cannot be predicted based...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005788
EISBN: 978-1-62708-165-8
..., fine-grained martensite yields the highest toughness, particularly for high strength levels. Fig. 9 Hardness distribution after tempering at 480 °C for 2 h. Source: Ref 6 Effects on Fatigue Resistance AISI 4140 specimens 50 mm in diameter by 300 mm long were tested in bending fatigue...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing. capacitors electronic applications packaged integrated circuits resistors solder joint...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005810
EISBN: 978-1-62708-165-8
..., % 30 10.2 Hardness, HB 415 388 Fatigue cycles (d) 105,000 (e) 58,600 (f) (a) Average values. (b) Six tests. (c) Two tests. (d) Fatigue specimens 21 mm (0.812 in.) in diameter. (e) Seven tests; range, 69,050 to 137,000. (f) Eight tests; range, 43,120 to 95,220...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... concurrently bridging damage mechanisms occurring in high-temperature isothermal tests and traditional TMF tests. A representative OP-BiF waveform is shown in Fig. 8(a) . Yet another waveform used in laboratory testing to represent realistic thermomechanical loading may be characterized as high-cycle fatigue...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0005723
EISBN: 978-1-62708-193-1
... A(T) arc tension specimen field) A(T) arc-shaped specimen (in tension) a0 mean stress in strain life method I moment of inertia ATC accelerated thermal cycling =(0"3 stress amplitude, O"a O"max- O"min)/2 IF isothermal fatigue a/W crack length to depth ratio O"ce critical stress in emergency condition...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.9781627081931
EISBN: 978-1-62708-193-1
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... is the discussion of design considerations against fatigue related to material performance under mechanical loading at constant temperature (isothermal fatigue, or simply fatigue). In this article, periodic loading of specimens is considered, and the material properties related to fatigue derived from these tests...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002415
EISBN: 978-1-62708-193-1
..., 2nd ed., 1982, Pergamon Press, p 530 Fig. 7 Effect of 0° layer fraction on S-N relation Fig. 8 Tension-tension and compression-compression fatigue tests of [0°/45°/90°/−45°] 2s carbon-fiber-reinforced plastic T300-5208 Fig. 9 Fatigue and static strengths normalized...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
... in fatigue, with a notch sensitivity ratio (ratio of notched to unnotched endurance limits) ranging from 1.2 to 1.6 for the notch geometry tested. Conventional ferritic and pearlitic ductile irons have a notch sensitivity of approximately 1.6, and steels with fatigue strengths similar to ADI exhibit notch...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures. aging carbide...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... by the low-pressure plasma spray process. Fig. 857 : Fracture surface of coated sample tested at 1050 °C (1920 °F) in isothermal low-cycle fatigue. The NiCoCrAlY coating was very ductile at the test temperature and did not crack. The well-protected superalloy failed via multiple internal cracking...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002402
EISBN: 978-1-62708-193-1
... with information on fatigue crack growth and fatigue behavior of weldments. carbon steel Charpy V-notch test corrosion resistance Cr-Mo steels fatigue fatigue crack growth fracture mechanics fracture resistance heat-resistant ferritic steels low-alloy steels low-cycle fatigue metallurgy toughness...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
...-rupture properties or the degree of deformation from creep. In recent years, the worldwide interest in life extension of high-temperature components has also promoted considerably more interest in elevated-temperature fatigue. This effort has led to tests and methods for evaluating the effects of creep...