Skip Nav Destination
Close Modal
Search Results for
isostatic
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 501 Search Results for
isostatic
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
... Abstract Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores...
Abstract
Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores are eliminated during HIP are reviewed. The article describes the effect of HIP on the mechanical properties, shape, and structure of castings as well as the effect of inclusions on as-HIPed properties. It examines the problems encountered in HIP and their solution. The article concludes with information on the economics of HIP processing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
... Abstract Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications...
Abstract
Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications, economics, and advantages of the process. The discussion also covers the use of HIP for additively manufactured material to eliminate internal defects, the HIP parameters required to eliminate internal defects, and the influence of HIP on the microstructure and properties of HIP additively manufactured material.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
... Abstract This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP...
Abstract
This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP. The article describes the available process routes for fabricating products using HIP and the steps involved in the production of a part via direct HIP of encapsulated gas-atomized spherical powder. It concludes with information on the microstructures of 316L stainless steel HIP powder metallurgy valve body and a list of the mechanical properties of several powder metallurgy alloys.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006140
EISBN: 978-1-62708-175-7
... Abstract Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP...
Abstract
Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP) processes involved in the PA powder metallurgy technique. It discusses the technical problems addressed in shape control and their solutions for understanding the advantages of powder metallurgy HIP.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006074
EISBN: 978-1-62708-175-7
... Abstract This article describes the unique aspects of cold isostatic pressing (CIP) in comparison with die compaction, for powder metallurgy parts. It details the components of CIP equipment, including pressure vessels, pressure generators, and tooling material. The article reviews the part...
Abstract
This article describes the unique aspects of cold isostatic pressing (CIP) in comparison with die compaction, for powder metallurgy parts. It details the components of CIP equipment, including pressure vessels, pressure generators, and tooling material. The article reviews the part shapes and their influence in determining tap density of the filled mold. It provides a discussion on process parameters, such as dwell time, depressurization rate, evaluation of green strength and density, and thermal processing, and illustrates a process flowchart for the production of CIP parts.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005509
EISBN: 978-1-62708-197-9
... Abstract This article discusses the two major applications of hot isostatic pressing (HIP), such as healing of inherent internal defects in castings and welds, and consolidation of powder materials. It describes the design principles of the HIP tooling, as well as the problems associated...
Abstract
This article discusses the two major applications of hot isostatic pressing (HIP), such as healing of inherent internal defects in castings and welds, and consolidation of powder materials. It describes the design principles of the HIP tooling, as well as the problems associated with mathematical modeling of HIP. The article presents an example for the modeling process of the HIP. It reviews the numerical modeling and tooling design of a casing component demonstration.
Image
Published: 01 December 2004
Fig. 9 An IN-100/IN-718 diffusion couple prepared by hot isostatic pressing at 1150 °C (2100 °F) for 4 h, followed by diffusion annealing at 1150 °C (2100 °F) for 1000 h ( Ref 16 ). Optical micrographs show the gamma matrix as gray, the gamma prime precipitates as white, and MC carbides
More
Image
Published: 01 December 2004
Fig. 10 A René 95/IN-718 diffusion couple prepared by hot isostatic pressing at 1150 °C (2100 °F) for 4 h, followed by diffusion annealing at 1150 °C (2100 °F) for 1000 h ( Ref 16 ). Optical micrographs show the gamma matrix as gray, the gamma prime precipitates as white, and MC carbides
More
Image
Published: 01 December 2004
Fig. 11 A René 88/IN-100 diffusion couple prepared by hot isostatic pressing at 1150 °C (2100 °F) for 4 h, followed by diffusion annealing at 1150 °C (2100 °F) for 1000 h ( Ref 16 ). Optical micrographs show the gamma matrix as gray, the gamma prime precipitates as white, and MC carbides
More
Image
Published: 01 December 2004
Fig. 79 AISI T15, powder-made. Sample was slow cooled after hot isostatic pressing. 28 HRC. Structure is partially annealed. 3% nital. 1000×
More
Image
Published: 31 December 2017
Fig. 19 Stress cycles to failure of cast and hot isostatic pressed (HIPed from powder) Stellite 4, 6, and 20 after rolling-contact fatigue tests (* indicates suspended tests without failure). The contact stress (GPa) and the number of stress cycles (millions) are also indicated. Test conducted
More
Image
in Carbide- and Boride-Based Thick Coatings for Abrasive Wear-Protection Applications
> Friction, Lubrication, and Wear Technology
Published: 31 December 2017
Fig. 10 Microstructure of Stellite 6 in the (a) as-cast and (b) hot isostatic pressed conditions
More
Image
in Failures of Rolling-Element Bearings and Their Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 15 Typical isostatic shaft lines with a fixed point and a loose one. Source: Ref 1 , 2
More
Image
Published: 30 June 2023
Fig. 8 Fatigue behavior of condition 1 (non-hot isostatic pressed/nonmachined) comparing build orientation. Parts from the same study are represented by like line and symbol styles, differing in red or purple to represent horizontal or vertical builds, respectively. EBM, electron beam melted
More
Image
Published: 30 September 2015
Fig. 8 Schematic of wet-bag cold isostatic pressing. An impervious moldable bag is filled with powder, evacuated, and subjected to an isostatic pressure using a water-based liquid medium at ambient temperature.
More
Image
Published: 30 September 2015
Fig. 12 Near-net shape aluminum-beryllium blanks consolidated by hot isostatic pressing
More
Image
Published: 30 September 2015
Fig. 14 (a) Latex bag used to contain beryllium powder for cold isostatic pressing. (b) Green near-net shape preform
More
Image
Published: 30 September 2015
Fig. 15 Schematic of cold isostatic press (CIP) and extrusion powder consolidation process for aluminum-beryllium alloys. HIP, hot isostatic press
More
Image
Published: 30 September 2015
Fig. 21 Wire sawing a beryllium block consolidated by hot isostatic pressing into multiple thin cards by passing it through parallel wires of an abrasive slurry saw
More
Image
Published: 30 September 2015
Fig. 9 (a) Typical hot isostatic pressing (HIP) vessel. (b) Schematic of the wire-wound unit. Courtesy of Avure Technologies. Source: Ref 13
More
1