1-20 of 460 Search Results for

iron-base superalloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005961
EISBN: 978-1-62708-168-9
..., and protective atmospheres used in heat treatment of iron-base precipitation-hardenable (PH) superalloys. It focuses on various factors to be considered in heat treating of PH stainless steels: cleaning prior to heat treatment, furnace atmospheres, time-temperature cycles, variations in cycles, and scale removal...
Image
Published: 01 January 1986
Fig. 39 AEM analysis of an iron-base superalloy. (a) η-Ni 3 Ti platelets. (b) Electron diffraction pattern in nearby γ matrix at zero specimen tilt. Zone axis is close to [001] γ . More
Image
Published: 01 January 1986
Fig. 27 AEM-EDS spectra collected from the iron-base superalloy Haynes Alloy 556. (a) Bright-field image of precipitates that decorate the grain boundaries. (b) and (c) show EDS spectra from the matrix and particles, respectively. Iron, chromium, nickel, cobalt, molybdenum, tungsten More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... Abstract The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000615
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of iron-base superalloys and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the neutron irradiation effect, fracture mode...
Image
Published: 01 January 1990
Fig. 8 1000-h stress-rupture curves of wrought cobalt-base (Haynes 188 and L-605) and wrought iron-base superalloys More
Image
Published: 01 January 1986
Fig. 21 Diffraction pattern and bright-field and centered dark-field images of an iron-base superalloy. (a) The diffraction pattern is a [100] fcc zone axis pattern. (b) By imaging with the transmitted beam, the γ′ precipitates are not visible. Only the strain fields associated More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001049
EISBN: 978-1-62708-161-0
... Abstract This article focuses on the properties of conventional wrought superalloys based on nickel, iron, and cobalt, as well as on the properties of alloys produced from powder. The powder metallurgy (P/M) category includes alloys that were originally developed as casting alloys; new alloy...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... with 21 to 40% Ni and iron-base superalloys Class IV: nickel- and cobalt-base superalloys As a general rule, overall aluminum diffusion is slower as the nickel, chromium, and cobalt contents increase. Therefore, higher temperatures and longer process times are required to produce greater...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... Abstract Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003993
EISBN: 978-1-62708-185-6
... superalloys, namely, iron-nickel superalloys, nickel-base alloys, cobalt-base alloys, and powder alloys. The article discusses the microstructural mechanisms during hot deformation and presents processing maps for various superalloys. It concludes with a discussion on heat treatment of wrought heat-resistant...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003331
EISBN: 978-1-62708-176-4
... casting alloys 415 35 Alloy steels, cast; quenched and tempered 401 262 Rhodium 401 100 Iridium 351 200 Gray irons; cast 350 140 Ruthenium 350 200 Nickel-base superalloys 341 302 Titanium and its alloys 331 … Ductile (nodular) irons; cast 300 140 Hafnium 285...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001052
EISBN: 978-1-62708-161-0
... Superalloys are the major materials of construction for today's high-temperature gas turbine engines used for both commercial and military aircraft. Nickel-base superalloys, along with iron-base and cobalt-base superalloys, are used throughout the engines in wrought, cast, powder metallurgy (P/M), and cast...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
... for grain boundary carbide precipitation, thus reducing chromium depletion at the grain boundaries. Cobalt is also an important alloying element in some iron-base superalloys. For example, Haynes 556 (UNS R30556) is an Fe-Ni-Cr-Co used extensively in sulfur-bearing environments. The resistance...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
...), 40 mL HCl, 20 mL HF For cobalt-base superalloys; etch 5 min in a, then 5 min in b 6. 50 mL saturated aqueous CuSO 4 (copper sulfate) and 50 mL HCl For iron-nickel- and nickel-base alloys; swab or immerse, room temperature (a) Whenever water is specified, use distilled water...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
..., and hot-corrosion properties. iron-base alloys mechanical alloying oxide dispersion-strengthened alloys mechanically alloyed commercial alloys nickel-base alloys superalloy powder MECHANICAL ALLOYING (MA) was originally developed for the manufacture of nickel-base superalloys strengthened...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... 48.0–52.0 … … … … … … … … … 50Ni-50Cr-Nb (ASTM A560) 0.10 bal 47.0–52.0 … … … … … … … … 1.4–1.7 Nb (a) Alloy Casting Institute designation Cast Nickel-Base Superalloys Superalloys are nickel-, iron-nickel-, and cobalt-base alloys generally used at temperatures...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001053
EISBN: 978-1-62708-161-0
... in with the scrap. Incineration can also be used to remove volatile metals such as lead and zinc. Rotary furnaces are commonly used by scrap processors. Recycling Stainless Steel and Superalloy Scrap Stainless steels are iron-base alloys that contain at least 10% Cr. Other metals are frequently added...
Image
Published: 01 December 1998
Fig. 2 Typical operating microstructures of representative superalloys. (a) Cast cobalt-base alloy. 250×. (b) Cast nickel-base alloy. 100×. (c) Wrought (left, 3300×) and cast (right, 5000×) nickel-base alloys. (d) Two wrought iron-nickel-base alloys (left, 17,000×; right, 3300×). Note script More
Image
Published: 01 January 1990
Fig. 16 Comparison of creep strength of Fe-40Al-0.1Zr-0.41B alloy and commercial iron-nickel-base superalloys More