1-20 of 521 Search Results for

iron castings

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... Abstract This article presents a discussion on the melting, pouring, and shakeout practices; composition control; molds, patterns, and casting design; heat treatment; and applications of different classes of nickel-chromium white irons and high-chromium white irons. iron castings heat...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
..., fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron. ductile iron castings austempered ductile iron compressive properties...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005325
EISBN: 978-1-62708-187-0
... advantages of the CG irons. compacted graphite iron castings castability chemical composition compacted graphite iron compressive strength corrosion resistance fatigue strength hardness impact properties mechanical properties shear properties tensile properties graphite morphology sonic...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... Abstract Malleable iron is a cast ferrous metal that is initially produced as white cast iron and is then heat treated to convert the carbon-containing phase from iron carbide to a nodular form of graphite called temper carbon. This article provides a discussion on the melting practices, heat...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
... Table 2 Specifications and applications related to malleable iron castings Specification No. Class or grade (a) ASTM metric equivalent class (b) Microstructure Typical applications Ferritic ASTM A 47 (c) 32510 22010 Temper carbon and ferrite General engineering...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
..., copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... of the base material physical properties, welding metallurgy, and processing limitations of the nonferrous alloys also may be needed. Gray iron is the most common type of ferrous casting. The weldability of this material is typically very good to poor because of the formation of...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005355
EISBN: 978-1-62708-187-0
... than from gray iron castings. In gray iron, relatively low-energy shaking, vibrating, tumbling, and/or shotblasting is used to force loose core sand out through the casting openings. Core sand in ferrous castings has much less strength because the ambient heat of the metal, as it solidifies in the...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
..., that cannot be removed effectively. For this reason, machining chips are often premelted to determine their exact composition before being incorporated into production heats. A third source of iron contamination (as well as other elements) is mixed casting revert. Some iron also comes into cobalt...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... these alloys has identical major alloy contents but has decreasing limits applicable to impurities, especially iron content. Aluminum Association composition limits for registered aluminum foundry alloys used to cast shapes are given in Table 1 . Table 1 does not include wrought alloys that are cast...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005336
EISBN: 978-1-62708-187-0
... classified as: Nickel Nickel-copper Nickel-chromium-iron Nickel-chromium-molybdenum Nickel-molybdenum Nickel-base proprietary Directional solidification/single crystal The cast nickel-base alloys, with the exception of some high-silicon and proprietary grades, have equivalent...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
... reduced impact properties. Molten zirconium reacts with and is embrittled by most materials, including organic and inorganic compounds, iron, and most other metals. Exposure to air by molten zirconium results in an instantaneous increase in oxygen and nitrogen throughout the molten metal. Because of its...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005329
EISBN: 978-1-62708-187-0
... cast. Traditional integrated mills melted ore in blast furnaces, converting blast furnace iron to steel and cast steel ingots. The ingots are rolled into plate or bar and then finally rolled into the desired structural shape. Minimills melt steel scrap in electric furnaces and then continuously cast...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005277
EISBN: 978-1-62708-187-0
... tested on all cast materials. Some rules have obvious implications and are applicable to all types of metals and alloys, including those based on aluminum, zinc, magnesium, cast irons, steels, air- and vacuum-cast nickel and cobalt, and titanium. Nevertheless, although all materials will probably benefit...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006264
EISBN: 978-1-62708-169-6
... … … 6.2 (a) D, die casting; P, permanent mold; S, sand; I, investment casting. Other products may pertain to the composition shown even though not listed. (b) Also contains 0.40–1.0% (0.7% nominal) Ag. (c) Also contains 0.04–0.07% (0.055% nominal) Be. (d) Beryllium-free, iron held to...