Skip Nav Destination
Close Modal
Search Results for
ion-leaching tests
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 163
Search Results for ion-leaching tests
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
..., and ion-leaching tests are also discussed. corrosion current density corrosion testing electrochemical corrosion testing electrochemical impedance measurement environment-assisted cracking tests fretting corrosion tests galvanic corrosion tests ion-leaching tests medical devices metallic...
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003169
EISBN: 978-1-62708-199-3
... and the product is separated into size fractions by sieving on set of laboratory screens with elutriation of the subsieve fraction. The size fractions are examined under the microscope to determine the extent of liberation, and concentration tests are run on size fractions to determine the degree of concentration...
Abstract
Ores, which consist of the primary valuable mineral, predominant gangue content, valuable by-products, and detrimental impurities, are extracted and directed to mineral processing. This article describes the mineral processing facilities, such as crushers, grinders, concentrators, separators, and flotation devices that are used for particle size reduction, separation of particles according to their settling rates in fluids and dewatering of concentrate particles. It explains the basic principles, flow diagrams, ore concentrate preparation methods, and equipment of major types of metallurgical processes, including pyrometallurgical, hydrometallurgical, and electrometallurgical processes.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004219
EISBN: 978-1-62708-184-9
.... While heap leaching can be performed using polymeric or other nonmetallic materials, a high-pressure and high-temperature process requires a metallic- or a ceramic-lined metallic container as the autoclave. Besides the acid environment, presence of oxygen and the multivalent metal ions in the ore...
Abstract
This article describes the corrosion of principal parts of mining equipment such as mine shafts, wire rope, rock bolts, and pump and piping systems. It discusses the diagnosis and prevention of various types of corrosion including uniform corrosion, pitting corrosion, crevice corrosion, erosion-corrosion, and intergranular corrosion. The article explains the corrosion in tanks, reactor vessels, cyclic loading machinery, and pressure leaching equipment.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003609
EISBN: 978-1-62708-182-5
... Abstract This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected...
Abstract
This article discusses two general mechanisms of corrosion in molten salts. One is the metal dissolution caused by the solubility of the metal in the melt. The second and most common mechanism is the oxidation of the metal to ions. Specific examples of the types of corrosion expected for the different metal-fused salt systems are also provided. The metal-fused salt systems include molten fluorides, chloride salts, molten nitrates, molten sulfates, hydroxide melts, and carbonate melts. The article concludes with information on prevention of molten salt corrosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
.... The formation of complex chem- when brought in contact with a material. A Contrast with physisorption. ical species by the coordination of groups of corrosive agent. atoms termed ligands to a central ion, com- corrodkote test. An accelerated corrosion test chevron pattern. A fractographic pattern of ra- monly...
Abstract
This article is a comprehensive collection of terms related to corrosion fundamentals, testing, and protection.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
..., but it can fail and lead to localized corrosion, including pitting, in the presence of aggressive anion species. Aggressive anion species, especially halide ions such as Cl − , cause pitting ( Ref 6 , 22 , 27 , 28 , 29 ). A possible mechanism of TiO 2 failure, which subsequently leads to pitting...
Abstract
This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides by the classification of oxide failure mechanisms. The mechanisms are spatially localized oxide film breakdown by the ingress of aggressive anions; spatially local or homogenous chemical dissolution of the oxide in a strong reducing-acid environment; and mechanical disruptions or depassivation such as scratching, abrading, or fretting. Titanium alloys can be classified into three primary groups such as titanium alloys with hexagonal close-packed crystallographic structure; beta titanium alloys with body-centered cubic crystallographic structures; and alpha + beta titanium alloys including near-alpha and near-beta titanium alloys. The article also illustrates the effects of alloying on active anodic corrosion of titanium and repassivation behavior of titanium and titanium-base alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005681
EISBN: 978-1-62708-198-6
... instead of dental amalgam and cast restorations has grown because of the possibility of adverse health effects from exposure to mercury that could leach from dental amalgams, and because of an increase in aesthetic demands and economic and convenience reasons compared to the cast metallic restorations...
Abstract
This article discusses the composition of the major components of dental composite resins: organic resin matrix, filler, coupling agents, and initiator-accelerator systems. It describes the properties of composite resins that are related to the amount and type of filler and resin-matrix compositions. The article also discusses the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It concludes with information on biodegradation and biocompatibility of resin-based restorative materials.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... on the failures of heat exchangers. chemical analysis corrosion corrosion fatigue cyclic stress heat exchangers mechanical test microscopic examination selective leaching stress-corrosion cracking tubing visual examination welding HEAT EXCHANGERS are generally used to transfer heat from...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006629
EISBN: 978-1-62708-213-6
... Abstract This article focuses on wet chemical methods that have stood the test of time in laboratories around the world. It begins with a description of the appropriateness of classical wet methods. This is followed by sections on sampling procedures, basic chemical equilibria, and wet...
Abstract
This article focuses on wet chemical methods that have stood the test of time in laboratories around the world. It begins with a description of the appropriateness of classical wet methods. This is followed by sections on sampling procedures, basic chemical equilibria, and wet analytical chemistry. Mechanical methods and nonoxidizing acids and/or acid mixtures for dissolving solid samples for wet chemical analysis are then reviewed. Qualitative methods that are used to identify materials by wet chemical reaction are also included. The article provides information on various methods for the separation of chemical mixtures and on the types of gravimetry and titrimetry. Strategies for removing inclusions are also included to aid in their compositional understanding. The article also briefly describes the processes involved in chemical surface studies and partitioning of oxidation states. It ends by presenting some examples of the applications of classical wet methods.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... of an intermediate ion to a glass are often opposed to those introduced by the addition of a modifier ion, that is, the reduction in the concentration of nonbridging anions or the reconversion of the glass-former ion to its coordination number in the unmodified glass. It follows that the addition of intermediate...
Abstract
This article describes the chemical composition, physical properties, thermal properties, mechanical properties, electrical properties, optical properties, magnetic properties, and chemical properties of glasses, glass-matrix composites, and glass-ceramics.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... is evolved and the zinc dissolves, forming an acidic aqueous solution of zinc chloride. The reaction is: (Eq 1) Zn + 2 HCl → ZnCl 2 + H 2 Since the chloride ion is not involved in the reaction, this equation can be written in the simplified form: (Eq 2) Zn + 2 H...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... and destructive testing, chemical analysis Loading direction can show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) Load exceeded the dynamic strength of the part Check for proper alloy and processing, as well as proper toughness, grain...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006070
EISBN: 978-1-62708-172-6
...; and leaches minerals from soils. Most ionic material readily dissociates in water, and water itself will ionize slightly into hydrogen and hydroxide ions. If water-soluble salts are present, they will also dissociate in water, significantly increasing the water conductivity. Corrosion of steel in water...
Abstract
Soluble salts on a surface can affect a steel substrate or coating in two principal ways: corrosion acceleration and osmotic blistering. This article provides a detailed discussion on the mechanisms for each of these deleterious effects. It describes the most detrimental anions with regard to corrosion, namely, chlorides, sulfates, and nitrates, and provides information on recognition and testing of the presence of soluble salts. The salt-measurement techniques and commercially available equipment are also described. The article provides information on research regarding tolerable levels of salts beneath coatings. The information shows that there appears to be a threshold limit to the salt contamination that a given coating/coating system can tolerate in a given environment.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004173
EISBN: 978-1-62708-184-9
... be given due consideration. Halide-Induced Corrosion Many types of solder fluxes contain halides. Frequently, the halide constituent is the chloride ion, but in some solder-flux formulations, bromide and fluoride ions may be present alone or in combination with chloride ions. Of course, solder flux...
Abstract
This article focuses on the various types of corrosion-related failure mechanisms and their effects on passive electrical components. The types include halide-induced corrosion, organic-acid-induced corrosion, electrochemical metal migration, silver tarnish, fretting, and metal whiskers. The passive electrical components include resistors, capacitors, wound components, sensors, transducers, relays, switches, connectors, printed circuit boards, and hardware.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... corrosion products in tissues surrounding implanted devices has the potential to cause osteolytic problems, and some problems, which were originally considered to have been due to metal sensitivity ( Ref 22 ), now appear to have been particulate related. Metal Ion Leaching and Systemic Effects...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001091
EISBN: 978-1-62708-162-7
... the gallium concentration reaches about 1% in the amalgam, it is drawn off and leached with a caustic solution. This yields a concentrated gallium solution from which crude gallium can be recovered by electrolysis ( Ref 7 ). Because mercury losses are significant owing to the high level of cathode...
Abstract
Gallium-base components can be found in a variety of products ranging from compact disk players to advanced military electronic warfare systems, owing to the factor that it can emit light, has a greater resistance to radiation and operates at faster speeds and higher temperatures. This article discusses the uses of gallium in optoelectronic devices and integrated circuits and applications of gallium. The article discusses the properties and grades of gallium arsenide and also provides information on resources of gallium. The article talks about the recovery techniques, including recovery from bauxite, zinc ore and secondary recovery process and purification. The article briefly describes the fabrication process of gallium arsenide crystals. Furthermore, the article gives a short note on world supply and demand of gallium and concludes with research and development on gallium arsenide integrated circuits.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
1