Skip Nav Destination
Close Modal
Search Results for
ion scattering spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 165 Search Results for
ion scattering spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006628
EISBN: 978-1-62708-213-6
... Abstract This article is a brief account of low-energy ion-scattering spectroscopy (LEIS) for determining the atomic structure of solid surfaces. It begins with a description of the general principles of LEIS. This is followed by a section providing information on the equipment used for LEIS...
Abstract
This article is a brief account of low-energy ion-scattering spectroscopy (LEIS) for determining the atomic structure of solid surfaces. It begins with a description of the general principles of LEIS. This is followed by a section providing information on the equipment used for LEIS. Various steps involved in the sample preparation, calibration, and data analysis are then discussed. The article concludes with a section on the applications and interpretation of LEIS in material analysis, including discussion on surface structural analysis, layer-by-layer (Frank-van der Merwe) growth, and low-energy atom-scattering spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001773
EISBN: 978-1-62708-178-8
... Abstract Low-energy ion-scattering spectroscopy (LEISS) is used extensively to analyze solid surfaces. The LEISS process relies on binary elastic collisions between an incident ion beam and the atoms in a sample to obtain information on the surface atoms. The velocity of the scattered ions...
Abstract
Low-energy ion-scattering spectroscopy (LEISS) is used extensively to analyze solid surfaces. The LEISS process relies on binary elastic collisions between an incident ion beam and the atoms in a sample to obtain information on the surface atoms. The velocity of the scattered ions is used to determine the mass of the atoms that are struck. This article introduces LEISS and its principles. It describes the use of LEISS spectra in qualitative and quantitative analyses, and reviews the instrumentation and applications of LEISS.
Image
Published: 15 December 2019
Fig. 9 Schematic view of low-energy ion-scattering spectroscopy combined with an ultrahigh vacuum chamber. AES, Auger electron spectroscopy; LEED, low-energy electron diffraction; MCP, microchannel plate; TDC, time-to-digital converter; TMP, turbo molecular pump
More
Image
Published: 15 December 2019
Fig. 11 A series of ion-scattering spectroscopy polar angle scans for 2 keV 20 Ne + ions backscattered from a Pt(111) surface along the [ 1 ¯ 10] azimuth
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001301
EISBN: 978-1-62708-170-2
... surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis. Auger electron...
Abstract
Coatings and thin films can be studied with surface analysis methods because their inherently small depth allows characterization of the surface composition, interface composition, and in-depth distribution of composition. This article describes principles and examples of common surface analysis methods, namely, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, secondary ion mass spectroscopy, and Rutherford backscattering spectroscopy. It also provides useful information on the applications of surface analysis.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
.... The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques...
Abstract
This article discusses the capabilities and limitations of various material characterization methods that assist in the selection of a proper analytical tool for analyzing particulate materials. Commonly used methods are microanalysis, surface analysis, and bulk analysis. The techniques used for performing microanalysis include scanning electron microscopy and electron probe X-ray microanalysis. The article describes surface analysis techniques, including Auger electron spectroscopy, X-ray photoelectron spectroscopy, and ion-scattering spectroscopy. Bulk analysis techniques, such as X-ray powder diffraction, inductively coupled plasma atomic emission spectroscopy, atomic absorption spectroscopy, and atomic fluorescence spectrometry, are also discussed.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis. corrosion corrosion inhibition...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Image
Published: 01 January 1994
Fig. 2 Depth of information (depth resolution) and lateral resolution of surface and microanalysis techniques. AES, Auger electron spectroscopy. EPMA, electron probe microanalysis. ESCA, electron spectroscopy for chemical analysis. FIM-AP, field ion microscopy - atom probe. ISS, ion scattering
More
Image
Published: 01 January 1994
spectroscopy). GDOES (GDMS), glow discharge optical emission spectroscopy (glow discharge mass spectroscopy). RBS (ISS), Rutherford backscattering spectroscopy (ion scattering spectroscopy). Source: Ref 3
More
Image
Published: 15 December 2019
; SEM: scanning electron microscopy; AFM: atomic force microscopy; EPMA: electron probe microanalysis; SAXS: x-ray solution scattering; AES: Auger electron spectroscopy; SIMS: secondary ion mass spectroscopy; LEISS: low-energy ion scattering spectroscopy
More
Image
in Introduction to Characterization of Organic Solids and Organic Liquids
> Materials Characterization
Published: 15 December 2019
: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning electron microscopy; SIMS: secondary ion mass
More
Image
Published: 15 December 2019
: liquid chromatography/mass spectrometry; LEISS: low-energy ion-scattering spectroscopy; MFS: molecular fluorescence spectroscopy; NAA: neutron activation analysis; NMR: nuclear magnetic resonance; OM: optical metallography; RS: Raman spectroscopy; SAXS: small-angle x-ray scattering; SEM: scanning
More
Image
Published: 15 December 2019
-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES, optical emission spectroscopy; OM, optical metallography; RBS, Rutherford backscattering spectrometry; RS, Raman spectroscopy
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... chromatography; ICP-MS, inductively coupled plasma mass spectroscopy; LC, liquid chromatography; LC/MS: liquid chromatography/mass spectrometry; LEISS, low-energy ion-scattering spectroscopy; MFS, molecular fluorescence spectroscopy; NAA, neutron activation analysis; NMR, nuclear magnetic resonance; OM, optical...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... inductively coupled plasma atomic emission spectroscopy ICP-MS inductively coupled plasma mass spectrometry IR infrared (spectroscopy) IRRAS infrared reflection absorption spectroscopy LEED low-energy electron diffraction LEISS low-energy ion-scattering spectroscopy...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... • … … • • • • • • • • • • … … Ion chromatography D,N … D,N D,N D,N D,N D,N D,N … N D,N D,N D,N … … Liquid chromatography … … D … D D D D … … D D D … … Liquid chromatography mass spectrometry D, • D,N D,• D,• D D D D … … D D D … … Low-energy ion-scattering spectroscopy...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
..., electron probe x-ray microanalysis; FTIR, Fourier transform infrared spectroscopy; IA, image analysis; IC, ion chromatography; ICP-AES, inductively coupled plasma atomic emission spectroscopy; IR, infrared spectroscopy; LEISS, low-energy ion-scattering spectroscopy; NAA, neutron activation analysis; OES...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... perpendicular planes as peaks in the energy spectra of the secondary arriving at different foci. electrons generated. backscattered ion. An ion that has entered a Auger electron spectroscopy (AES). A tech- sample and, through one or more collisions, atom. The smallest particle of an element that nique...
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... ISO International Organization for Standardization ISS ion scattering spectroscopy J joule J ion current density k Boltzmann constant k thermal conductivity; Boltzmann constant; wear factor; wear coefficient K kelvin K wear coefficient...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... oxygen index GC/MS gas chromatograph/mass ISO International Organization for spectrometer Standardization LPS liquid-phase sintering GPa gigapascal ISS ion scattering spectroscopy LTCC low-temperature co-fired multilayer GPC gel permeation chromatography IT isothermal technique ceramic gpd grams per...
1