Skip Nav Destination
Close Modal
By
Soundarapandian Santhanakrishnan, Narendra B. Dahotre
By
A. Bloyce, P.H. Morton, T. Bell
By
Arnold R. Marder
By
David M. Sanders, Joseph W. Glaser, Steven Falabella
Search Results for
ion plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 727
Search Results for ion plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... Abstract This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Image
Published: 01 August 2013
Image
Schematic showing typical ion plating installations. (a) Plasma-based confi...
Available to PurchasePublished: 01 January 1994
Fig. 2 Schematic showing typical ion plating installations. (a) Plasma-based configuration with resistively heated vaporization source. (b) Vacuum-based configuration with electron-beam evaporation source
More
Image
Typical arc sources used in ion plating. (a) Vacuum arc/molten anode source...
Available to PurchasePublished: 01 January 1994
Fig. 8 Typical arc sources used in ion plating. (a) Vacuum arc/molten anode source. In the vacuum, the ions are accelerated away from the positive space charge in the plasma. (b) Cathodic arc vaporization source. In the plasma, the film ions are thermalized in the plasma, but both the film
More
Image
Published: 01 January 1994
Image
Published: 01 January 2003
Image
Published: 01 December 1998
Image
Measured x-ray diffraction pattern for sputter ion plated titanium nitride....
Available to PurchasePublished: 01 January 1994
Fig. 7 Measured x-ray diffraction pattern for sputter ion plated titanium nitride. Vertical lines represent data peak positions for titanium nitride from Fig. 6 . Film shows a [111] preferred orientation. C/s, counts per second
More
Book Chapter
Laser Surface Hardening
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005808
EISBN: 978-1-62708-165-8
... and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface...
Abstract
Laser surface hardening is a noncontact process that provides a chemically inert and clean environment as well as flexible integration with operating systems. This article provides a brief discussion on the various conventional surface-modification techniques to enhance the surface and mechanical properties of ferrous and nonferrous alloys. The techniques are physical vapor deposition, chemical vapor deposition, sputtering, ion plating, electroplating, electroless plating, and displacement plating. The article describes five categories of laser surface modification, namely, laser surface heat treatment, laser surface melting such as skin melting or glazing, laser direct metal deposition such as cladding, alloying, and hardfacing, laser physical vapor deposition, and laser shock peening. The article provides detailed information on absorptivity, laser scanning technology, and thermokinetic phase transformations. It also describes the influence of cooling rate on laser heat treatment and the effect of processing parameters on temperature, microstructure, and case depth hardness.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005707
EISBN: 978-1-62708-171-9
... techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering. anodizing case hardening chemical vapor deposition corrosion electroplating hardfacing hot dip coating ion implantation ion plating physical vapor deposition...
Abstract
Coatings and other surface modifications are used for a variety of functional, economic, and aesthetic purposes. Two major applications of thermal spray coatings are for wear resistance and corrosion resistance. This article discusses thermal (surface hardening) and thermochemical (carburizing, nitriding, and boriding) surface modifications, electrochemical treatments (electroplating, and anodizing), chemical treatments (electroless plating, phosphating, and hot dip coating), hardfacing, and thermal spray processes. It provides information on chemical and physical vapor deposition techniques such as conventional CVD, laser-assisted CVD, cathodic arc deposition, molecular beam epitaxy, ion plating, and sputtering.
Book Chapter
Physical Vapor Deposition
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... Abstract Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Book Chapter
CVD and PVD Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
... Abstract Vapor-deposition processes fall into two major categories, namely, physical vapor deposition (PVD) and chemical vapor deposition (CVD). This article describes major deposition processes such as sputtering, evaporation, ion plating, and CVD. The list of materials that can be vapor...
Abstract
Vapor-deposition processes fall into two major categories, namely, physical vapor deposition (PVD) and chemical vapor deposition (CVD). This article describes major deposition processes such as sputtering, evaporation, ion plating, and CVD. The list of materials that can be vapor deposited is extensive and covers almost any coating requirement. The article provides a table of some corrosion-resistant vapor deposited materials. It concludes with an overview of the applications of CVD and PVD coatings and a discussion on coatings for graphite, the aluminum coating of steel, and alloy coatings for aircraft turbines, marine turbines, and industrial turbines.
Book Chapter
Friction and Wear of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006436
EISBN: 978-1-62708-192-4
..., and ion plating surface modification treatments. The thermochemical conversion surface treatments include nitriding, carburizing, boriding, and solid lubrication. friction wear titanium alloys physical vapor deposition thermochemical conversion treatments ion implantation sputtering...
Abstract
This article describes the surface modification treatments used to modify the tribological properties of titanium alloys. These include physical vapor deposition and thermochemical conversion treatments. The physical vapor deposition includes ion implantation, sputtering, evaporation, and ion plating surface modification treatments. The thermochemical conversion surface treatments include nitriding, carburizing, boriding, and solid lubrication.
Image
Schematic showing key components of a barrel-plating configuration used in ...
Available to PurchasePublished: 01 January 1994
Fig. 10 Schematic showing key components of a barrel-plating configuration used in ion plating. The grid allows the acceleration of ions through the grid-holes to bombard the small parts enclosed within the rotating barrel (cage). Source: Ref 99
More
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002494
EISBN: 978-1-62708-194-8
... are used or part is rotated/translated in beam Avoid high aspect ratio holes and recesses, grooves, etc., that would not allow the beam to reach the bottom surfaces Mask areas not to be coated Ion plating Allow for electrical contact to be made on nonsignificant surfaces or use a conductive...
Abstract
This article presents general design principles for different types of surface-finishing processes, such as cleaning, organic coatings, and inorganic coatings applied by a variety of techniques. It discusses the factors that influence the selection of surface-finishing processes. These include fabrication processes, size, weight, functional requirements, and design features. The article discusses the design as an integral part of manufacturing. It contains tables that summarize the design limitations for selected surface-preparation, organic finishing, and inorganic finishing processes.
Image
Anodic polarization curves for selected coating systems. (a) TiN deposited ...
Available to PurchasePublished: 01 January 1994
Book Chapter
Abbreviations, Symbols, and Tradenames: Surface Engineering
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... at which cementite begins to precipitate from austenite on cooling ARE activated reactive evaporation ARIP activated reactive ion plating ARP Aerospace Recommended Practice ASLE American Society of Lubrication Engineers (former name of STLE) ASM American Society...
Book Chapter
Surface Engineering of Titanium and Titanium Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
... and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book Chapter
Effects of Surface Treatments on Materials Performance
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002466
EISBN: 978-1-62708-194-8
... costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains...
Abstract
Surface treatments are used in a variety of ways to improve the material properties of a component. This article provides information on surface treatments that improve service performance so that the design engineer may consider surface-engineered components as an alternative to more costly materials. It describes solidification surface treatments such as hot dip coatings, weld overlays, and thermal spray coatings. The article discusses deposition surface treatments such as electrochemical plating, chemical vapor deposition, and physical vapor deposition processes. It explains surface hardening and diffusion coatings such as carburizing, nitriding, and carbonitriding. The article also tabulates typical characteristics of carburizing, nitriding, and carbonitriding diffusion treatments.
Book Chapter
Arc Deposition
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
... coatings, this bias can be controlled using a direct-current power supply. The level of bias is limited at the upper end by thermal considerations, because the part being coated is heated by condensing ions. Many of the trends that exist for other ion plating processes also apply to vacuum arc deposition...
Abstract
This article describes the characteristics of continuous cathodic arc sources and filtering process for removing macroparticles from a cathodic arc. It provides information on the types of arc sources and the properties of deposited materials. The advantages, limitations, and applications of arc deposition are also discussed.
1