1-20 of 317 Search Results for

ion beam interaction

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006677
EISBN: 978-1-62708-213-6
... accessories and options that enable the instrument to realize its full potential across all of the varied applications. This is followed by a detailed analysis of the physical processes associated with the ion beam interacting with the sample. Finally, a complete survey of the most prominent FIB applications...
Image
Published: 15 December 2019
Fig. 24 Collision cascades for five different energies for the same incident ion species and same sample. The energy of the ion beam is also of great importance in determining the sample interactions. More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003253
EISBN: 978-1-62708-199-3
... ). An electron beam is produced and focused to a small spot on the sample surface. This spot can be rastered across an operator-defined area of the surface or stopped and moved to a particular location of interest. The beam penetrates the sample and interacts with the atoms in the first ∼1 μm, exciting atoms...
Book Chapter

By S.L. Rohde
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001288
EISBN: 978-1-62708-170-2
... Abstract Sputtering is a nonthermal vaporization process in which the surface atoms are physically ejected from a surface by momentum transfer from an energetic bombarding species of atomic/molecular size. It uses a glow discharge or an ion beam to generate a flux of ions incident on the target...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006628
EISBN: 978-1-62708-213-6
... between ions scattered from one atom (B) and a second atom (C), as shown in Fig. 7 . The presence of at least two atoms is needed for blocking. As shown in Fig. 7 , when a beam of kiloelectron volt ions with parallel trajectories interacts with the first atom A or B, the latter acts as a source...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
... and reactive or ion beam etching. vapor-phase process vapor-surface interaction hetereogeneous process homogenous reaction chemical vapor deposition numerical simulation molecular modeling multiscale simulation sputtering deposition ion beam etching VAPOR-PHASE PROCESSES (VPP) involve...
Image
Published: 15 December 2019
Fig. 47 Aluminum posts on silicon substrate images by (a) scanning electron microscope (SEM) and (b) helium focused ion beam (FIB). The helium image offers surface-specific information, while the SEM-sample interaction produces a mix of surface and deeper information. More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
... causes a divergence of the electron beam and degrades the SEM image. In variable-pressure SEM, some air is allowed into the sample chamber, and the interaction between the electron beam and the air molecules creates a cloud of positive ions around the electron beam. These ions will neutralize...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006748
EISBN: 978-1-62708-213-6
... of polarization. atoms, ions, radicals, and molecules. coulometric titration. angle of incidence. The angle between an inci- absorptivity. A measure of radiant energy analog-to-digital converter (ADC). A device dent radiant beam and a perpendicular to the from an incident beam as it traverses an that converts...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... Abstract Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001775
EISBN: 978-1-62708-178-8
... to the target electrons in an almost continuous frictionlike manner. This type of interaction does not alter significantly the direction of the ion beam. The energy loss per unit path length ( dE / dx ) can be measured experimentally by passing the ion beam through a thin foil of thickness Δ x and measuring...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006637
EISBN: 978-1-62708-213-6
... to the target electrons in an almost continuous frictionlike manner. This type of interaction does not alter significantly the direction of the ion beam. The energy loss per unit path length ( dE / dx ) can be measured experimentally by passing the ion beam through a thin foil of thickness Δ x and measuring...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006675
EISBN: 978-1-62708-213-6
... determination of the surface Atom probe tomography Ellipsometry, mostly used for thin-film thickness measurement The techniques covered in this division are based on probing methods using direct probe contact, electron, ion, photon, thermal, or x-ray interaction between the analytical instrument...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
..., backscattered electrons, and x-rays, are described in the following paragraphs. Beam-Sample Interactions When the incident electron beam impinges on the surface, it penetrates a short distance into the sample, interacting with the atoms in the sample as it penetrates. Typical penetration distances range...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001774
EISBN: 978-1-62708-178-8
... based on ion beam sputtering of the sample surface, although new approaches to SIMS based on fast atom bombardment are being developed. The interaction between the energetic primary ions and the solid surface is complex. At incident ion energies from 1 to 20 keV, the most important interaction...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001292
EISBN: 978-1-62708-170-2
... of dopant concentration levels over several orders of magnitude as compared to doping by thermal diffusion. Since the mid-1970s, the use of ion implantation and other closely related ion beam processes has expanded into a number of diverse application areas in the international research and development...
Book Chapter

By Donald M. Mattox
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... ). The bombarding species and the depositing species can be from a number of sources. Bombardment can take place in a plasma or vacuum environment. When a beam of energetic particles is used in vacuum, the process is often called ion-beam-assisted deposition (IBAD). A vacuum can be defined as an environment...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005692
EISBN: 978-1-62708-178-8
... interferometer. An instrument in which the which an ion is neutralized by passage of protons (Z) in the nucleus, but a differ- light from a source is split into two or through a gas or by interaction with a ent number of neutrons (N). Isotopes dif- more beams, which are subsequently re- material surface. fer...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
... involved in an XPS process. It shows an energetic x-ray beam impinging on the surface. Due to the high energy of the photons, they eject one or more core electrons. The ejected electrons are collected by the spectrometer and eventually detected by a multichannel analyzer. The process of this interaction...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006126
EISBN: 978-1-62708-175-7
... with closely adjacent spectral peaks. For surface analysis of metal powders, x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) can be utilized. To interpret the data correctly, one must understand the interaction between the electron beam and the sample. For example, with AES...