Skip Nav Destination
Close Modal
Search Results for
investment casting process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 450 Search Results for
investment casting process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Titanium and Titanium Alloy Castings
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Image
in Polycrystalline Cast Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 8 Basic steps in the investment casting process. See Fig. 9(a) for a close-up of an automated slurry coating process. Source: Ref 4
More
Image
Published: 01 December 1998
Image
Published: 01 November 2010
Image
Published: 30 November 2018
Image
Published: 01 December 2008
Fig. 9 Example of rapid prototyping process with investment casting. (a) Valve body prototype prepared for investment casting manufacturing without hard tooling. (b) Soft tooling for production investment casting mold. (c) Final casting. With rapid tooling, metal casting has developed
More
Image
Published: 31 August 2017
Fig. 16 Steps in the investment casting (lost wax) process. (a) Pattern. (b) Assembly. (c) Investing. (d) Stuccoing. (e) Dewaxing. (f) Firing. (g) Pouring. (h) Knockout. (i) Finishing. (j) Inspection. Source: Ref 53
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... Abstract Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking...
Abstract
Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... Abstract This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005256
EISBN: 978-1-62708-187-0
... of the investment casting process in terms of molding but with an expendable pattern made from high-quality expanded polystyrene (EPS) as in lost foam (instead of the lost wax pattern of investment casting). The EPS pattern is coated in ceramic slurry and then fired to produce the ceramic mold. The firing process...
Abstract
The Replicast process is developed to overcome the formation of lustrous carbon defects and carbon pickup observed in conventional evaporative pattern casting processes. This article provides a discussion on the pattern production, process capabilities, advantages, and limitations of Replicast process.
Image
in Titanium and Titanium Alloy Castings
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 17 Titanium housings for aerospace optical applications produced by the investment casting process.
More
Image
Published: 01 December 2008
Fig. 15 Titanium housings for military optical applications produced by the investment casting process
More
Image
Published: 01 December 2008
Fig. 17 Titanium knee and hip implant prostheses manufactured by the investment casting process
More
Image
in Titanium and Titanium Alloy Castings
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 18 Titanium surgical knee and hip implant prostheses manufactured by the investment casting process
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005253
EISBN: 978-1-62708-187-0
... foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods...
Abstract
Depending on the size and application, castings manufactured with the expendable mold process and with expendable patterns increase the tolerance from 1.5 to 3.5 times that of the permanent pattern methods. This article reviews the two major expendable pattern methods, such as lost foam and investment casting. It discusses the Replicast casting process that involves patternmaking with polystyrene and a ceramic shell mold. The article contains a table that summarizes the differences in the steps of casting a part between the permanent pattern and expendable pattern methods.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005265
EISBN: 978-1-62708-187-0
... to approximately 20 kg (44 lb). Production volumes range from 50 castings per year to 180,000 per day. The process is widely used for investment castings, precision sand molds made of resin or cold-box bonded sands, and semipermanent molds. The markets commonly served by these processes include automotive, hand...
Abstract
This article discusses the general principles and advantages of countergravity mold filling. It details several production implementations that use differential pressure countergravity mold filling methods, namely the countergravity low-pressure air process, countergravity low-pressure vacuum process, countergravity low-pressure inert atmosphere process, countergravity pressure vacuum process, supported shell technique, loose sand vacuum process, and countergravity centrifugal casting process.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001082
EISBN: 978-1-62708-162-7
... tolerance band (a) mm in. Investment cast Rammed graphite process 25 to <102 1 to <4 0.76 mm (0.030 in.) or 1.0%, whichever is greater 1.52 mm (0.060 in.) 102 to <305 4 to <12 1.02 mm (0.040 in.) or 0.7%, whichever is greater 1.78 mm (0.070 in.) or 1.0%, whichever is greater...
Abstract
The combination of high strength-to-weight ratio, excellent mechanical properties, and corrosion resistance makes titanium the best material choice for many critical applications. This article commences with a description of the historical perspective of titanium casting technology. It discusses the various types of molding methods, namely, rammed graphite molding, and lost-wax investment molding. The article provides information on the casting design, melting, and pouring practices, and describes the microstructure, hot isostatic pressing, heat treatment, and mechanical properties of Ti-6AI-4V alloy. It also talks about the chemical milling and weld repair, and describes the product applications of titanium alloy castings. Tensile properties, standard industry specifications, and chemical compositions of various titanium alloy castings are tabulated.
1