Skip Nav Destination
Close Modal
By
D. Scott MacKenzie, Andrew L. Banka
By
B. Hernández-Morales
By
Božidar Liščić, Saša Singer
By
P.A. Kobryn
By
Wei Zhang, Rohit Rai, Amit Kumar, Igor V. Krivtsun
By
Francisco Andrés Acosta-González
By
C. Simsir
By
Ronald A. Wallis
By
Michael Sprayberry, Michael Kirka, Vincent Paquit
By
Kong Ma, Robert Goetz, Shesh K. Srivatsa
Search Results for
inverse heat-conduction problem
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 446
Search Results for inverse heat-conduction problem
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Estimated surface heat flux as a function of estimated surface temperature ...
Available to Purchase
in Characterization of Heat Transfer during Quenching
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 18 Estimated surface heat flux as a function of estimated surface temperature using actual (TD) and equivalent (ED) thermocouple depths in solving the inverse heat-conduction problem for a thermocouple inserted parallel (0°) or perpendicular (90°) to the active heat-transfer surface
More
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0006997
EISBN: 978-1-62708-450-5
... be obtained by solving an inverse heat conduction problem (IHCP) ( Ref 40 – 42 ). IHCP is based on temperature measurements for the estimation of unknown HTC appearing in the analysis of physical problems in thermal engineering. Therefore, while in the classical direct heat conduction problem (DHCP) the cause...
Abstract
This article presents the modes of heat transfer and the stages of cooling during quenching. It provides an overview on the wetting process and then focuses on the evaluation of heat transfer during quenching. It also presents the challenges of thermal process evaluation based on an inverse heat conduction analysis. The article contains a compilation of best practice examples on heat transfer evaluation, which are intended to represent the practical aspects and applicability of the methods aiming the prediction of heat-transfer coefficients.
Book Chapter
Determination of Heat Transfer Coefficients for Thermal Modeling
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005436
EISBN: 978-1-62708-196-2
... and empirical methods, application of cooling curves, computational fluid dynamics, and the inverse conduction calculation and measurement of parts. Suitable examples are also provided. quenching distortion thermal gradient heat-transfer coefficient thermal conductivity thermal diffusivity...
Abstract
This article provides information on the various stages of quenching, sources of distortion, and factors that affect the creation of thermal gradients. It reviews the various determinations of heat-transfer coefficients by the thermal conductivity and diffusivity method, analytical and empirical methods, application of cooling curves, computational fluid dynamics, and the inverse conduction calculation and measurement of parts. Suitable examples are also provided.
Book Chapter
Characterization of Heat Transfer during Quenching
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005814
EISBN: 978-1-62708-165-8
... coefficient inverse heat-conduction problem THE RECORD of 1548 megatonnes (Mt) during 2012 ( Ref 1 ) for global crude steel production reflects the continuing success of steel in obtaining a variety of mechanical properties that can be achieved after processing, at a competitive cost. Although...
Abstract
This article describes the mechanisms and characteristics of heat transfer in the quenching of steel. This article describes the characterization of boiling heat transfer, including pool boiling, forced convective boiling, and rewetting, which plays a key role in defining the heat-extraction characteristics of a liquid quenchant. It provides information on heat generated microstructural field evolution and information on the analysis and characterization of heat transfer boundary conditions.
Book Chapter
Large Probes for Characterization of Industrial Quenching Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
... For small laboratory probes, one of the possibilities for HTC calculation is to solve the inverse heat-conduction problem. The temperature distribution T ( x, t ), at a point x inside the probe, for times t ≥ 0, is determined by the heat-conduction equation: (Eq 1) c ρ ∂ T ∂ t = div(λ...
Abstract
This article provides a discussion on probes for laboratory tests and resultant curves of industrial quenching processes. It describes the scope of the tests, and the calculation of heat-transfer coefficient (HTC) based on the tests. The article highlights the differences between the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The theoretical principle behind and the purpose of the temperature gradient method are discussed. The article provides information on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation.
Book Chapter
Heat-Transfer Interface Effects for Solidification Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005423
EISBN: 978-1-62708-196-2
... and calculated h as a function of time for the experimental setup in Fig. 8 . htc, heat-transfer coefficient. Source: Ref 5 Analytical Challenges One approach to determining h from experimental T ( t ) data is to solve the inverse heat conduction problem for h ( t ). Various methods...
Abstract
A key aspect of solidification process modeling is the treatment of the interface between the solidifying casting and the mold in which it is contained. This article begins with information on casting-mold interface heat-transfer phenomena. It describes practical considerations and methods for incorporating interface heat-transfer coefficient into models and for quantifying the heat transfer coefficient experimentally. The article concludes with information on the selection of the heat transfer coefficient for a given casting configuration.
Book Chapter
Modeling of Heat and Mass Transfer in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... by the following modified energy equation: (Eq 5) ρ ∂ h ∂ t + ρ ∂ ( u i h ) ∂ x i = ∂ ∂ x i ( k C p ∂ h ∂ x i ) + S h where k is the thermal conductivity. The source term S h is due to the latent heat content...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Book Chapter
Advanced Industrial Quench System Design—Fluid Dynamics Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007008
EISBN: 978-1-62708-450-5
... by assuming already-reported values or from a thermal analysis and using the solution to the inverse heat-conduction problem (IHCP). Another boundary condition that may be present for a solid body is a plane of symmetry. For example, consider a plate that cools down from both larger faces. Computer memory can...
Abstract
Computational fluid dynamics (CFD) provides an efficient, alternate, virtual approach for simulating and analyzing quenching processes with an impact on component design, manufacturing process, and quality. This article provides domain insights for quenching researchers and CFD practitioners for the modeling of the industrial quenching process and for supporting the diverse multifunctional needs in an industry, ranging from primary metallurgical companies (steel, aluminum, and other alloys), original equipment manufacturers, engineering companies, captive and commercial heat treating facilities, quench system manufacturers, and quench fluid suppliers. It describes the governing differential equations for the fluid flow and heat-transfer phenomena during quenching. The article also discusses different modeling categories to determine a CFD methodology for quenching.
Book Chapter
Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
..., and the Japanese JSHT. During this decade, several ambitious projects conducted in the United States, Germany, and Japan helped to alleviate the drawbacks in the application of heat treatment simulation in the industry. Although a number of problems (discussed later in this article) remain, those projects resolved...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005824
EISBN: 978-1-62708-165-8
... located on the surface or preferably near the surface and at positions below the surface ( Ref 12 , Ref 13 , Ref 14 , Ref 15 ). For evaluation of heat flux densities and heat-transfer coefficients, numerous methods of solving inverse problems have been developed, although they mostly refer...
Abstract
This article provides an overview of common quenching media, the factors involved in the mechanism of quenching, and process variables, namely, surface condition, mass and section size of the workpiece, and flow rate of the quenching liquid. It describes the methods of quenchant characterization using hardening-power and cooling-power tests. The article discusses the fundamentals involved in heat-transfer coefficient and heat flux of quenching processes. This discussion is followed by various actual examples of applications of these methods using simplified equations. Quenchant evaluation, classification, selection, and maintenance are reviewed in detail. The article addresses the various reasons for quench oil variability and complications due to aging and contamination.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001332
EISBN: 978-1-62708-173-3
... The fact that power density is inversely related to the interaction time of the heat source on the material is evident in Fig. 1 . Because this represents a transient heat conduction problem, one can expect the heat to diffuse into the steel to a depth that increases as the square root of time...
Abstract
Welding and joining processes are essential for the development of virtually every manufactured product. This article discusses the fundamentals of fusion welding processes, with an emphasis on the underlying scientific principles. It reviews the role of energy-source intensity and the width of the heat-affected zone in fusion welding processes. The article contains figures from which the properties of any heat source can be estimated readily.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005577
EISBN: 978-1-62708-174-0
... Spectrum of practical heat intensities used for fusion welding The fact that power density is inversely related to the interaction time of the heat source on the material is evident in Fig. 1 . Because this represents a transient heat conduction problem, one can expect the heat to diffuse...
Abstract
The article discusses the fundamentals of fusion welding processes with an emphasis on the underlying scientific principles. It describes how surface temperature varies on steel with surface power densities that range from 400 to 8000 W/cm2. The article illustrates the spectrum of practical heat intensities used for fusion welding. It contains tables that present information on the thermal diffusivities of common elements and alloys from 20 to 100 °C.
Book Chapter
Modeling of Quenching, Residual-Stress Formation, and Quench Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005530
EISBN: 978-1-62708-197-9
... required between 1000 and 2000 iterations to converge to a solution. A few researchers have also applied neural network models to the inverse heat conduction problem, although, to date, the applications have been limited to relatively simple cases ( Ref 19 , Ref 20 , Ref 21 ). Historical...
Abstract
This article provides information on the boundary conditions that must be applied to model the heat-transfer coefficient (HTC) in a component being cooled. It describes the historical perspective of various experiments to determine the HTCs. Computational fluid dynamics codes have also been used to predict the HTCs around a part. The article provides information on the various modeling studies used to predict cooling rates in a component. The prediction of residual stresses by validation and optimization of residual stress models is also discussed. Several techniques, such as models neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching.
Book Chapter
Micromechanics
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003377
EISBN: 978-1-62708-195-5
... the equations describing heat conduction and moisture diffusion, in both the transient and stationary stages. Thus, in the latter stage, the concentration C satisfies the Laplace equation. When a composite with a polymeric matrix is placed in a wet environment, the matrix will begin to absorb moisture...
Abstract
A unidirectional fiber composite (UDC) consists of aligned continuous fibers that are embedded in a matrix. This article describes a variety of analytical methods that are used to determine the various physical properties of the UDC. These properties include elasticity, thermal expansion coefficients, moisture swelling coefficients, static and dynamic viscoelastic properties, conductivity, and moisture diffusivity.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009013
EISBN: 978-1-62708-185-6
... are successfully used to solve practical thermomechanical processing problems. coefficient of thermal expansion density specific heat thermal conductivity thermal diffusivity thermomechanical processing thermomechanical property test THERMOMECHANICAL PROPERTIES TESTS, as covered in this article...
Abstract
Thermomechanical are used to gain insight into the causes of problems that arise during a given thermomechanical process. This article provides examples to demonstrate how significant the parameters were selected for specific tests. It examines the types of problems that can occur during a thermomechanical process. The article provides information on the thermophysical properties, which include specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density. It concludes with examples that illustrate how the various considerations in testing are successfully used to solve practical thermomechanical processing problems.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005878
EISBN: 978-1-62708-167-2
... Abstract Temperature is a typical parameter characterizing the heating level of any particle belonging to a heated body. The basic problem of heat transfer computation is associated with appropriate determination of heat transfer coefficients. This article provides a discussion on the basic...
Abstract
Temperature is a typical parameter characterizing the heating level of any particle belonging to a heated body. The basic problem of heat transfer computation is associated with appropriate determination of heat transfer coefficients. This article provides a discussion on the basic equations, initial and boundary conditions, and multiple reflection phenomena of mathematical modeling. These boundary conditions include the Dirichlet, Neumann, and Henkel conditions.
Book Chapter
Heat-Transfer Equations
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005449
EISBN: 978-1-62708-196-2
... gradient at that section. The proportion constant is called the thermal conductivity of the material. In general, the thermal conductivity varies with temperature. Some industrial problems involving heat conduction are the annealing of castings, the vulcanizing of rubber, and the heating or cooling...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. It also demonstrates how to set up and solve real-world problems, while accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation.
Book Chapter
Heat-Transfer Equations
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005993
EISBN: 978-1-62708-166-5
...-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications...
Abstract
This article is a comprehensive collection of formulas, tables, and analytical solutions, addressing hundreds of heat-transfer scenarios encountered in science and engineering. With detailed explanations and dimensioned drawings, the article demonstrates how to set up and solve real-world problems, accounting for material properties, environmental variables, boundary and state conditions, and the primary modes of heat transfer: conduction, convection, and radiation. The article also includes reference data and provides closed-form solutions for common heat-transfer applications such as insulated pipes, cooling fins, radiation shields, and composite structures and configurations.
Book Chapter
Process Optimization
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006994
EISBN: 978-1-62708-439-0
... deposition process modes are primarily differentiated into heat conduction and keyhole modes. It is possible to characterize the modes in AM by considering a simple thermal model and the application of nondimensionality of processing variables. In this case, if power is too low and scan velocity too high...
Abstract
Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use in powder-bed fusion and directed energy deposition processes. In the latter case, closed-loop feedback is used to control melt pool temperature and cooling rate in order to achieve desired microstructure.
Book Chapter
Modeling of Residual Stress and Machining Distortion in Aerospace Components
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005537
EISBN: 978-1-62708-197-9
... Abstract Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress...
Abstract
Modeling will help reduce machining problems and thereby enable more rapid introduction of high-performance materials and components. This article discusses the technical needs of aircraft engine and airframe structural components and modeling of heat-treat-induced residual stress by finite-element residual-stress analysis. It describes the two-dimensional (2-D) and three-dimensional (3-D) procedures involved in finite-element residual-stress analysis. The article deals with the 2-D and 3-D machining distortion validation on engine-disk-type components. It describes methods for obtaining machining-induced residual stresses, including detailed finite-element analysis of the cutting process, the simple fast-acting mechanistic model, and the semi-empirical linear stress model. The article concludes with information on the modeling benefits and implementation of modeling in a production environment.
1