1-20 of 642 Search Results for

intermetallics

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001102
EISBN: 978-1-62708-162-7
... × 10 −4 s −1 . Source: Ref 254 Fig. 36 Melting temperature versus specific gravity for 293 binary intermetallic compounds. The solid line is an empirical approximate envelope to the data. Source: Ref 286 Fig. 31 Creep strength, defined as the stress to maintain a creep rate...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... Comparison of the creep behavior of conventional titanium alloys and titanium aluminide intermetallics Fig. 13 The binary iron-aluminum phase diagram Fig. 2 Crystal structures of nickel, iron, and titanium aluminides Fig. 1 Atomic arrangements of conventional alloys and ordered...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
... to that in various intermetallic compounds. Lines are drawn for the chemical potentials for equilibrium between two phases. The equilibria between ions and insoluble oxides or hydroxides are unaltered by substrate ordering. Fig. 22 Electrochemical equilibrium diagram for nickel and aluminum showing...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... deformed via equal channel angular extrusion at (a) 1150 °C (2100 °F) or (b) 1250 °C (2280 °F). Source: Ref 87 Abstract Abstract This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... extrusion and reviews the various issues and benefits associated with hydrostatic extrusion. The article discusses the hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005220
EISBN: 978-1-62708-187-0
... of intermetallics. The article also describes the role of bifilm defects in fracture. castings nucleation bifilms metallurgy solidified cast metal intermetallics MOST METALS start their lives in the liquid state. Once melted, they are usually subjected to various transfers between furnaces or ladles...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001101
EISBN: 978-1-62708-162-7
... presents an overview of the status of MMCs, and provides information on physical and mechanical properties, processing methods, distinctive features, and various types of continuously and discontinuously reinforced aluminum, magnesium, titanium, copper, superalloy, and intermetallic-matrix composites...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
... of sponge production and melting processes, oxide dispersion-strengthened alloys by powder metallurgy techniques, titanium-base intermetallic compounds, and titanium-matrix composites. aerospace application automotive application corrosion application developments in titanium processing market...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001043
EISBN: 978-1-62708-161-0
... in that they are hardened by a metallurgical reaction that does not involve carbon. Instead, these steels are strengthened by the precipitation of intermetallic compounds at temperatures of about 480 deg C. Commercial maraging steels are designed to provide specific levels of yield strength in the range of 1030 to 2420 MPa...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003154
EISBN: 978-1-62708-199-3
... to demagnetizing fields and sufficiently high magnetic flux output to provide useful and stable magnetic fields. Permanent magnet materials include a variety of alloys, intermetallics, and ceramics. This article discusses the composition, properties, and applications of permanent magnetic materials...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... from the bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... applications. This article discusses the mechanical properties of MMCs, namely aluminum-