1-20 of 216 Search Results for

intermetallic

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... Abstract This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... Abstract Alloys based on ordered intermetallic compounds constitute a unique class of metallic material that form long-range ordered crystal structures below a critical temperature. Aluminides, a unique class of ordered intermetallic materials, possesses many attributes like low densities, high...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
... Abstract This article reviews the corrosion behavior of intermetallics for the modeling of the corrosion processes and for devising a strategy to create corrosion protective systems through alloy and coating design. It discusses the high-temperature corrosion properties of intermetallics and...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004007
EISBN: 978-1-62708-185-6
... hydrostatic extrusion of structural alloys, composites, brittle materials, and intermetallics or intermetallic compounds, with examples. It concludes with a discussion on the attempts made to extend the hydrostatic extrusion to higher temperatures. brittle materials composites hot hydrostatic...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003154
EISBN: 978-1-62708-199-3
... Abstract Premanent magnet refers to solid materials that have sufficiently high resistance to demagnetizing fields and sufficiently high magnetic flux output to provide useful and stable magnetic fields. Permanent magnet materials include a variety of alloys, intermetallics, and ceramics. This...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003155
EISBN: 978-1-62708-199-3
... bulk of the superconductor. Superconducting materials that have received the most attention are niobium-titanium superconductors (the most widely used superconductor), A15 compounds (in which class the important ordered intermetallic Nb3Sn lies), ternary molybdenum chalcogenides (Chevrel phases), and...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
...-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003246
EISBN: 978-1-62708-199-3
... carbides, graphite, martensite, and a variety of intermetallic phases, nitrides, and nonmetallic inclusions. The article further describes the two-phase constituents including, tempered martensite, pearlite, and bainite and nonmetallic inclusions in steel that consist of two or more phases. common...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005220
EISBN: 978-1-62708-187-0
... unfurling on mechanical properties of the solidified cast metal. It provides a discussion on the mechanisms of unfurling to determine the casting properties of the metals. These include gas precipitation, shrinkage, linear contraction, dendrite pushing, and nucleation and growth of intermetallics. The...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005440
EISBN: 978-1-62708-196-2
... varying significance. The tendency to form compounds, intermetallic or ionic, is related to the difference in electronegativity which, in general, increases in a sweep from lower left to upper right of the periodic system. Fig. 1 Source: ASM Metals Reference Book , 2nd ed., American Society for...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003808
EISBN: 978-1-62708-183-2
... unpainted condition, whereas Superzinc is intended for use in the painted condition. Because the zinc-aluminum alloy composition is similar to the zinc-aluminum eutectic, the alloy coating has a eutectic structure containing scattered islands of primary zinc. An Fe-Al-Zn intermetallic is present at the...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006247
EISBN: 978-1-62708-163-4
... each phase diagram. The crystal structure data shown with the diagrams have been updated in some instances with information from Pearson's Handbook of Crystallographic Data for Intermetallic Phases , Second Edition, and have been augmented in all instances with the prototype for each phase listed...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005229
EISBN: 978-1-62708-187-0
..., dissolution of unstable phases or precipitates, coarsening/spheroidization of stable intermetallic phases, surface oxidation, hydrogen degassing, and pore generation and agglomeration. Before discussing various issues pertinent to homogenization, it is imperative to address the root cause for inhomogeneities...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005230
EISBN: 978-1-62708-187-0
... intermetallics, morphological changes of iron-rich intermetallics, recrystallization, grain growth, and so on. Among them, silicon fragmentation and spheroidization and dissolution of intermetallics are of paramount importance in cast aluminum-silicon alloys. Natural aging refers to the decomposition...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000631
EISBN: 978-1-62708-181-8
... vacuum-deposited aluminum. Note the relatively thick intermetallic layer that formed during power cycling. SEM, 2750× (R.J. Schwinghamer, NASA Marshall Space Flight Center) Fig. 1337 Same type of ball bond as in Fig. 1336 . In this case, intermetallic formation weakened the bond, causing it to...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... β isomorphous (i.e., have similar phase relations) with bcc titanium. Titanium does not form intermetallic compounds with the β isomorphous elements. Eutectoid systems are formed with chromium, iron, copper, nickel, palladium, cobalt, manganese, and certain other transition metals. These elements...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... formation of the brittle intermetallic compound β-CoAl significantly reduced fabricability. In addition to chromium, small amounts of elements such as manganese, silicon, and rare earth elements (e.g., lanthanum) can be used to enhance the formation of protective oxide scales at elevated temperatures...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006198
EISBN: 978-1-62708-163-4
... 2 P 6 3 / mmc Mg Re 2 Si 7.0 mP ∗ P 2 1 / b … ReSi 13.1 cF 8 P 2 1 3 FeSi ReSi 1.8 21.4 tI 6 I 4/ mmm MoSi 2 (Si) 100 cF 8 Fd 3 m C (diamond) Source: G. Shao, Intermetallics , Vol 9 (No. 12), 2001, p 1063–1068 ( Ref 2 ) Re-Ta...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003149
EISBN: 978-1-62708-199-3
... 1010 °C (1450 to 1850 °F). Iron, chromium, and nickel form intermetallic compounds, and the distribution of these compound phases is critical to the corrosion resistance of the alloys in steam and hot water. These alloys are generally forged in the β region, then solution treated at about 1065 °C (1950...