Skip Nav Destination
Close Modal
Search Results for
intergranular corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 761 Search Results for
intergranular corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003664
EISBN: 978-1-62708-182-5
... Abstract Most alloys are susceptible to intergranular corrosion, also known as intergranular attack (IGA), when exposed to specific environments. This article reviews the theory and application of acceptance tests for detecting the susceptibility of stainless steels and nickel-base alloys...
Abstract
Most alloys are susceptible to intergranular corrosion, also known as intergranular attack (IGA), when exposed to specific environments. This article reviews the theory and application of acceptance tests for detecting the susceptibility of stainless steels and nickel-base alloys to IGA. It describes the most serious forms of structure-dependent corrosion, such as stress-corrosion cracking and exfoliation, in aluminum alloys including strain-Hardened 5xxx (Al-Mg) alloys and heat treated high-strength alloys. The article concludes with information on the evaluation tests for other alloys such as magnesium alloys and zinc die casting alloys.
Image
Published: 01 January 2002
Fig. 37 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller's reagent. 500×
More
Image
Published: 15 January 2021
Fig. 37 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller’s reagent. Original
More
Image
Published: 15 June 2019
Fig. 10 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller’s reagent. Original
More
Image
Published: 01 January 2005
Fig. 7 Various types of intergranular corrosion. (a) Interdendritic corrosion in a cast structure. (b) Interfragmentary corrosion in a wrought, unrecrystallized structure. (c) Intergranular corrosion in a recrystallized wrought structure. All etched with Keller's reagent. Original
More
Image
Published: 01 January 1987
Fig. 82 Planar (a) and cross sectional (b) views of intergranular corrosion (grain dropping) in a sensitized austenitic stainless steel. As-polished. (a) 50×. (b) 100×
More
Image
Published: 01 January 2002
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×
More
Image
Published: 01 January 2002
Fig. 36 Intergranular corrosion of the inside surface heat-affected zone of E-Brite stainless steel adjacent to the weld fusion line. Electrolytically etched with 10% oxalic acid. 100×
More
Image
Published: 01 January 2002
Fig. 58 Intergranular corrosion. (a) Sample from a cast stainless steel neck fitting. (b) Region adjacent to the intergranular corrosion revealing extensive σ-phase precipitation at grain boundaries; electrolytic etching using 10 N KOH. (c) Same area as (b) after repolishing and etching
More
Image
Published: 01 January 2006
Fig. 9 Intergranular corrosion of an ACI CN-7M stainless steel pump component that contacted HCl-Cl 2 gas fumes. Note the grain-boundary attack. Courtesy of A.R. Wilfley & Sons, Inc., Pump Division
More
Image
Published: 15 January 2021
Fig. 35 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. Original magnification: 200×
More
Image
Published: 15 January 2021
Fig. 36 Intergranular corrosion of the inside surface heat-affected zone of E-Brite stainless steel adjacent to the weld fusion line. Electrolytically etched with 10% oxalic acid. Original magnification: 100×
More
Image
Published: 01 January 2003
Fig. 3 Planar (a) and cross-sectional (b) views of intergranular corrosion (grain dropping) in a sensitized austenitic stainless steel. As-polished. (a) 50×. (b) 100×. Courtesy of G.F. Vander Voort, Carpenter Technology Corporation
More
Image
Published: 01 January 2003
Fig. 39 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×
More
Image
Published: 01 January 2003
Fig. 40 Intergranular corrosion of the inside surface heat-affected zone of E-Brite stainless steel adjacent to the weld fusion line. Electrolytically etched with 10% oxalic acid. 100×
More
Image
Published: 30 November 2018
Fig. 27 Intergranular corrosion at the surface of friction-stir-welded 2024-T351 after being subjected to a salt spray test. Source: Ref 28
More
Image
Published: 01 January 1993
Fig. 14 Precipitation of carbide M 23 C 6 and area of intergranular corrosion attack of stainless steel grade AISI 304 (0.042C-0.59Si-1.23Mn-17.46Cr-10.58Ni-0.046N). Source: Ref 19
More
Image
Published: 01 January 1993
Image
Published: 01 January 1993
Fig. 13 Intergranular corrosion of a contaminated E-Brite stainless steel weld. Electrolytically etched with 10% oxalic acid. 200×. Source: Ref 47
More
Image
Published: 01 January 1993
Fig. 14 Intergranular corrosion of the inside surface HAZ of E-Brite stainless steel adjacent to the weld fusion line. Electrolytically etched with 10% oxalic acid. 100×. Source: Ref 47
More
1