1-20 of 418 Search Results for

intergranular brittle fracture

Sort by
Image
Published: 01 December 1998
Fig. 20 Intergranular brittle fractures in tungsten, iridium, and a tungsten-3 wt% rhenium alloy. (a) Sintered tungsten rod drawn to 1.5 mm (0.060 in.) diam, recrystallized for 100 h at 10 −6 torr and 2600 °C (4712 °F), and fractured in tension. (b) Iridium sheet annealed for 50 h in purified More
Image
Published: 01 January 1987
Fig. 1237 Surface of a brittle, intergranular fracture, produced by bending, in a polycrystalline iridium wire (0.127-mm, or 0.005-in., diam) that had been annealed in vacuum for 2 h at 1200 °C (2190 °F). See Fig. 1238 for an enlarged view of the area in the rectangle. SEM, 470× More
Image
Published: 01 January 1987
Fig. 1239 Surface of a brittle, intergranular fracture, produced by bending, in an iridium sheet (rolled to a thickness of 0.076 mm, or 0.0003 in.) that had been annealed for 2 h at 1200 °C (2190 °F) in vacuum. Note the deep secondary cracks between the elongated grains. 2100× More
Image
Published: 01 January 1987
Fig. 540 Brittle intergranular fracture of AISI 9254 due to quench cracking. The crack initiated at a seam, 0.15 mm (0.006 in.) deep. The seam wall is the irregularly textured area at top in the fractograph. SEM, 200× (J.H. Maker, Associated Spring, Barnes Group Inc.) More
Image
Published: 30 January 2024
Fig. 20 SEM secondary electron fractographs of the pile-shoe bar impact fracture showing (a) near-surface intergranular brittle fracture and (b) intergranular plus cleavage brittle fracture near the center of the bar. Courtesy of Tim Hattenberg, Royal Netherlands Aerospace Centre, Marknesse More
Image
Published: 15 January 2021
Fig. 26 Catastrophic chain failure (Example 14). (a) Flat fracture through the chain link. (b) Link fracture surface showing somewhat shiny, crystalline features in fan-shaped direction. (c) Near-surface brittle fracture features. Original magnification: 500×. (d) Intergranular brittle More
Image
Published: 15 January 2021
Fig. 31 Bicycle head tube cracking (Example 18). (a) Crack on head tube. (b) Scanning electron microscope image showing mixed ductile fracture of a tensile specimen from the head tube. Original magnification: 500×. (c) Head tube fracture surface reveals intergranular brittle fracture. Original More
Image
Published: 01 January 2002
in the large-grain base material at the same magnification as (b), showing intergranular brittle fracture features. Scanning electron micrograph. 119×. (d) Metallographic image showing the weak grain-boundary phase in the weld. Potassium dichromate etch. 297× More
Image
Published: 15 January 2021
: 119×. (c) Morphology in the large-grained base material at the same magnification as (b), showing intergranular brittle fracture features. Scanning electron micrograph. Original magnification: 119×. (d) Metallographic image showing the weak grain-boundary phase in the weld. Potassium dichromate etch More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
... Abstract This article discusses the visual and microscopic characteristics of fractures of cast alloys. These fractures include ductile rupture, transgranular brittle fracture, intergranular fracture, fatigue, and environmentally induced fracture. The article also describes the factors...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... at magnifications above 500× • Overload zone: may be either ductile or brittle • Multiple intergranular fissures covered with reaction scale • Grain faces may show porosity Metallographic inspection, 50–1000× (cross section) • Grain distortion and flow near fracture • Irregular, transgranular fracture...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels. dimpled intergranular fracture hydrogen embrittlement intergranular brittle fracture intergranular fatigue intergranular fracture intergranular stress...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
...• Single crack with no branching• Surface slip band emergence • Cleavage or intergranular fracture• Origin area may contain an imperfection or stress concentrator • Progressive zone: worn appearance, flat, may show striations at magnifications above 500ו Overload zone: may be either ductile or brittle...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
... a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures. dimpled intergranular fracture grain boundaries hydrogen embrittlement intergranular brittle cracking intergranular fatigue intergranular stress-corrosion...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000612
EISBN: 978-1-62708-181-8
... fracture, low-cycle and high-cycle fatigue fracture, fracture surface, brittle intergranular fracture, hydrogen embrittlement, and intergranular stress-corrosion cracking of stainless steel components of these steels. The components include high-pressure compressor parts, springs, deflector yokes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided. brittle transgranular fracture creep fracture deformation ductile fracture...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000626
EISBN: 978-1-62708-181-8
... the brittle fracture, transgranular fracture, intergranular fracture, and crack propagation of the tungsten carbide. brittle fracture cemented carbides four-point bending test fractograph intergranular fracture tungsten carbide Fig. 1273 Eta phase on the fracture surface of a 94WC-6Co alloy...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 30 January 2024
DOI: 10.31399/asm.hb.v12.a0006842
EISBN: 978-1-62708-387-4
... a crack or fracture. Dimpled rupture is considered to be a ductile fracture-surface morphology on the microscale, while the other three possible fracture-surface morphologies (intergranular, cleavage, and fatigue) are generally considered to be brittle on the microscale. If a component fracture is ductile...
Image
Published: 01 January 1996
transgranularly or intergranularly brittle intergranular fracture, BIF. (b) Mode II brittle fracture is preceded by microscopic, but not microscopic, plastic deformation. Indeed, plastic deformation nucleates cracks that may propagate by cleavage or in an intergranular mode (as shown schematically). (c More
Image
Published: 15 January 2021
Fig. 6 (a) Brittle fracture of cast aluminum tensile bar. (b) Brittle fracture of stainless steel. (c) Intergranular fracture of a superalloy. (d) Scanning electron microscope image of intergranular fracture. (e) Scanning electron microscope image of cleavage More