Skip Nav Destination
Close Modal
Search Results for
interfacial wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 251 Search Results for
interfacial wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 1 Interfacial wear processes. (a) Initial contact of the two surfaces. (b) Running-in process where the soft polymer molecules are gradually transferred to the hard counterface as third-body. (c) Steady-state wear process where the wear and friction phenomena are influenced mainly
More
Image
Published: 15 May 2022
Fig. 1 Interfacial wear processes. (a) Initial contact of the two surfaces. (b) Running-in process in which the soft polymer molecules are transferred to the hard counterface. (c) Steady-state wear process in which the wear and friction phenomena are influenced mainly by the shear and adhesive
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... microcracks on the tooth flank of an oil-lubricated nylon driving gear. 37×. Source: Ref 53 Fig. 16 Failed polyoxymethylene gear wheel that had been in operation in a boiler-room environment. 305×. Source: Ref 53 Fig. 1 Interfacial wear processes. (a) Initial contact of the two...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
... Abstract This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics...
Abstract
This article presents the mechanisms of polymer wear and quantifies wear in terms of wear rate (rate of removal of the material). Interfacial and bulk wear are discussed as well as a discussion on the wear study of "elastomers," "thermosets," "glassy thermoplastics," and "semicrystalline thermoplastics." The article also discusses the effects of environment and lubricant on the wear failures of polymers. It presents a case study on considering nylon as a tribological material and failure examples, explaining wear resistance of polyurethane elastomeric coatings and failure of an acetal gear wheel.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009000
EISBN: 978-1-62708-186-3
..., microstructure, interfacial friction, surface temperatures, and wear rate. high-strength steels stampings interfacial friction microstructure mild steel surface morphology surface roughness surface temperature wear rate IN AN EFFORT to improve the fuel economy of automotive vehicles, various...
Abstract
This article describes the laboratory techniques for direct measurement and quantification of die wear in verifying a proprietary die-wear predictor methodology. This method is based on a theoretical formula that can be used to predict the rate of die wear and the life of a die surface coating, applicable to both mild steel and high-strength steels stampings. The article discusses the behavior of the surface conditions through quantitative measurements and surface analyses conducted throughout the wear tests. The surface conditions include surface roughness, surface morphology, microstructure, interfacial friction, surface temperatures, and wear rate.
Image
Published: 01 January 2002
thinning of fibers; 3, interfacial separation of fiber and matrix; 4, fiber cracking; 5, back-transferred polymer or organic fibers (film and layered wear debris) showing delamination and cracking; 6, metallic and wear debris transferred from the counterface; 7, pulled-out or peeled-off fiber pieces
More
Image
Published: 15 May 2022
; 3, interfacial separation of fiber and matrix; 4, fiber cracking; 5, back-transferred polymer or organic fibers (film and layered wear debris) showing delamination and cracking; 6, metallic and wear debris transferred from the counterface; and 7, pulled-out or peeled-off fiber pieces
More
Image
Published: 31 December 2017
by indenting hard asperities of contacting bodies or hard particles (microcutting, microplowing, microcracking). (c) Adhesion. Formation and rupture of adhesive interfacial cold weld spots, materials transfer, and generation of wear debris. (d) Tribochemical reaction. Chemical materials/atmosphere/lubricant
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006377
EISBN: 978-1-62708-192-4
... Abstract Transition metal dichalcogenides (TMD) are solid lubricant materials, specifically, intrinsic solid lubricants, whose crystal structure facilitates interfacial sliding/shear to achieve low friction and wear in sliding contacts and low torque in rolling contacts. This article provides...
Abstract
Transition metal dichalcogenides (TMD) are solid lubricant materials, specifically, intrinsic solid lubricants, whose crystal structure facilitates interfacial sliding/shear to achieve low friction and wear in sliding contacts and low torque in rolling contacts. This article provides information on sliding friction and wear behavior of unbonded, bonded, and vapor-deposited pure and composite MoS 2 and WS 2 coatings. It discusses the rolling-torque behavior and applications of vapor-deposited pure and composite MoS 2 and WS 2 coatings. The article concludes with information on various forms of TMD lubrication, namely, oils, greases, microparticle and nanoparticle additives.
Image
Published: 01 January 2002
Fig. 2 Relative abrasive wear loss of polymethylmethacrylate (PMMA) and composites filled with quartz and glass against abrasives SiC (45 μm), WIB, SiO 2 (10 μm) and CaCO 3 (3 μm) as a function of filler volume fraction, V f . WIB, weak interfacial bond; SIB, strong interfacial bond: 1
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006403
EISBN: 978-1-62708-192-4
..., there is sufficient information to formulate a model and to assess the significance of various parameters, including materials, which can be changed to resolve the wear problem. Wear Mechanisms The interfacial deterioration processes are called wear mechanisms. In general terms, there are three basic...
Abstract
Tribology is the science and technology of interacting surfaces in relative motion. This article describes in detail the basic structural, operational, and interaction parameters of a tribosystem. The interaction parameters, which characterize the action of the operational parameters on the structural components in the system, consist of three important aspects: contact parameters, friction parameters, and wear parameters. These three aspects embody the complex mechanisms and relationships between the constituents of a tribosystem. The article concludes with information on the selection criteria of a material for wear applications.
Image
Published: 31 December 2017
Fig. 13 Wear mode as a function of the friction factor, f HK , and the attack angle, θ. The friction factor is a dimensionless shear-strength parameter defined as the quotient of the interfacial shear stress and the shear strength of the soft metal.
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006375
EISBN: 978-1-62708-192-4
... in the real area of contact increased. The interfacial bonds between metal and ceramic surfaces were generally stronger than the cohesive bonds in the metal. Thus, the metal fractured when shear occurred. The observed wear and transfer of metal to the ceramic were mainly caused by the strength...
Abstract
This article discusses the adhesion behavior of materials in low-pressure and vacuum environments and provides a schematic illustration of an apparatus for measuring adhesion and friction in ultrahigh vacuum. It describes the effects of low-oxygen pressures and vacuum environments on adhesion and friction, as well as the effects of defined exposure to oxygen on friction. The article discusses the wear of various metals in contact with ceramics, and alloying element effects on friction, wear, and transfer of materials. It also describes studies that characterize the contributions of surface contamination and chemical changes to tribology in low-pressure and vacuum environments.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
... configuration, the bulk materials properties and metallurgical description, and the surface topographies and characteristics (cleaned surfaces before test). Note that the interfacial tribological processes act differently on each of the two triboelements, depending on the contact-area-to-wear-track ratio, ε...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006869
EISBN: 978-1-62708-395-9
..., microcracking, and microcutting; 2, sliding and wear thinning of fibers; 3, interfacial separation of fiber and matrix; 4, fiber cracking; 5, back-transferred polymer or organic fibers (film and layered wear debris) showing delamination and cracking; 6, metallic and wear debris transferred from the counterface...
Abstract
Reinforced polymers (RPs) are widely used in structural, industrial, automotive, and engineering applications due to their ecofriendly nature and the potential to manipulate their properties. This article addresses the technical synthesis of RPs, referring to their tribological behavior, to provide insights into the contribution and interaction of influential parameters on the wear behavior of polymers. It provides a brief discussion on the effects of significant parameters on RP tribology. The article describes abrasive and adhesive wear and provides a theoretical synthesis of the literature regarding the wear mechanisms of RPs. It also describes the synthesis of abrasive wear failure of different types of RPs and highlights the contribution of these influential parameters. The article addresses the synthesis of adhesive wear failure of different types of RPs.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... inertness within the body), high stiffness, and low friction and wear as articulating surfaces. Their main drawback is their brittle nature and resultant low impact resistance. Thus, a few examples are known where ceramic particles are combined to form composites while retaining properties...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... and electrochemical properties for maximized resistance to corrosive wear. Fig. 10 Interfacial regions are generally more anodic due to the presence of defect and misfit strains, which have higher strain energy and are preferential sites for corrosion. (a) Grain boundaries are more anodic than grains and thus...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003279
EISBN: 978-1-62708-176-4
... occur in various size scales. Obviously, the fine-scale interfacial contact processes involved in nanoscale coatings on hard disks require a different testing approach than the macroscale wear that occurs on the digger teeth of mining equipment and on the bows of icebreakers. Therefore, not only...
Abstract
This article discusses the tests designed specifically to evaluate the adhesion, friction, and wear behavior of various material systems. It tabulates the characteristics of common types of wear and mechanical surface damage. The article also considers the displaying and analyzing of adhesion, friction, and wear test data. It concludes with a description of devices used for testing adhesion, friction, and wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003572
EISBN: 978-1-62708-180-1
..., and microcutting; microplowing; 2, sliding and wear thinning of fibers; 3, interfacial separation of fiber and matrix; 4, fiber cracking; 5, back-transferred polymer or organic fibers (film and layered wear debris) showing delamination and cracking; 6, metallic and wear debris transferred from the counterface; 7...
Abstract
This article reviews the abrasive and adhesive wear failure of several types of reinforced polymers, including particulate-reinforced polymers, short-fiber reinforced polymers (SFRP), continuous unidirectional fiber reinforced polymers (FRP), particulate-filled composites, mixed composites (SFRP and particulate-filled), unidirectional FRP composites, and fabric reinforced composites. Friction and wear performance of the composites, correlation of performance with various materials properties, and studies on wear-of failure mechanisms by scanning electron microscopy are discussed for each of these types.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003280
EISBN: 978-1-62708-176-4
... and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial...
Abstract
This article describes measurement techniques for the three basic types of adhesion: fundamental adhesion, thermodynamic adhesion, and practical adhesion. It discusses common measurement methods for each type of adhesion with the main focus on practical adhesion testing of coatings and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial interfaces. Testing techniques for <i>in situ</i> environmental testing of thin-film adhesion are also reviewed.
1