Skip Nav Destination
Close Modal
Search Results for
interatomic bonds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 98 Search Results for
interatomic bonds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005574
EISBN: 978-1-62708-174-0
...Abstract Abstract This article discusses three distinct mechanisms of bonding for solid-state (forge) welding processes, namely, contaminant displacement/interatomic bonding, dissociation of retained oxides, and decomposition of the interfacial structure. It explains the processes that can...
Abstract
This article discusses three distinct mechanisms of bonding for solid-state (forge) welding processes, namely, contaminant displacement/interatomic bonding, dissociation of retained oxides, and decomposition of the interfacial structure. It explains the processes that can be characterized as having two stages: heating and forging. The article also includes a table that illustrates weld strengths as a function of annealing temperature for a range of materials.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006223
EISBN: 978-1-62708-163-4
... and the Gibbs free energy of a binary solution. It schematically illustrates the structure of a binary solid solution with interatomic bonds and shows how the equilibrium state of an alloy can be obtained from the free-energy curves at a given temperature. The article concludes with information...
Abstract
Thermodynamic descriptions have become available for a large number of alloy systems and allow the calculation of the phase diagrams of multicomponent alloys. This article begins with a discussion on three laws of thermodynamics: the Law of Conservation of Energy, the Second Law of Thermodynamics, and the Third Law of Thermodynamics. It informs that for transformations that occur at a constant temperature and pressure, the relative stability of the system is determined by its Gibbs free energy. The article describes the Gibbs free energy of a single-component unary system and the Gibbs free energy of a binary solution. It schematically illustrates the structure of a binary solid solution with interatomic bonds and shows how the equilibrium state of an alloy can be obtained from the free-energy curves at a given temperature. The article concludes with information on the construction of eutectic and binary phase diagrams from Gibbs free-energy curves.
Image
in Localization Parameter for the Prediction of Interface Structures and Reactions
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
is the interface shear modulus. With these data, it is possible to calculate the localization parameter. The horizontal arrows at the interface represent an external stress applied to the interface. The small arrows linking atoms across the interface symbolize the stretched interatomic bonds across the interface
More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005412
EISBN: 978-1-62708-196-2
..., starting from such data as cohesion energy, vaporization energy (showing the energy needed to break interatomic bonds in a material composed of one type of atoms), and free energy to form the given chemical compound. Furthermore, the chemical composition of the atmosphere around the material may influence...
Abstract
This article summarizes a physical model of an interface structure and shows how the model helps in optimizing atomistic modeling studies. It presents the orientation relationship of the interface structure to define the mutual crystallographic position of adjacent crystals. The article describes the model-informed atomistic modeling of the interface structures for interpolating the results of atomistic modeling to predict the properties of interfaces. Theories to predict low-energy orientation relationships are described. The article discusses the use of the localization parameter, such as shear modulus, bonding energy, and transformations, for prediction of interface structures. It provides information on the application of the atomistic modeling of interface structure to predict interface reaction mechanisms.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001762
EISBN: 978-1-62708-178-8
... Fourier transform of the intensity data yields the radial distribution function (RDF). The RDF gives the distribution of interatomic distances present in the sample and also gives information concerning the frequency with which particular distances occur. Figure 1 illustrates the RDF for silica glass...
Abstract
The diffraction pattern of any material contains structural and chemical property information that can be extracted using radial distribution function analysis. This article provides an introduction to the technique and presents several examples highlighting various ways in which it can be used. It begins with a discussion on the principles of diffraction and scattering and the effectiveness of x-ray, neutron, and electron energy sources for different types of measurements. It provides information on data collection and reduction and explains how to create atomic distribution plots from intensity and scattering angle data. The article also presents application parameters for defining short distances and background intensity and describes a procedure for generating pair distribution functions.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
... changes in the interatomic spacing and the stretching of interatomic bonds. The magnitude of modulus is a measure of the resistance to separation of adjacent atoms. Therefore, the modulus is found to be proportional to the slope of the interatomic force/distance curve at equilibrium distance...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002452
EISBN: 978-1-62708-194-8
... stiffness, and the density of bonds per unit area. An interatomic bond is like a spring: it has a spring constant, S (units: N/m). Young's modulus, E , is roughly (Eq 1) E = S r o where r o is the “atom size” ( r o 3 is the mean atomic or ionic volume). The wide range...
Abstract
Properties of an engineering material have a characteristic range of values that are conveniently displayed on materials selection charts. This article describes the plotting of data on these charts. It discusses the features of various types of material property charts, namely, modulus-density, strength-density, fracture toughness-density, modulus-strength, specific stiffness-specific strength, fracture toughness-modulus, fracture toughness-strength, loss coefficient-modulus, thermal conductivity-thermal diffusivity, thermal expansion-thermal conductivity, thermal expansion-modulus, and normalized strength-thermal expansion charts. The article examines the use of material property charts in presenting information in a compact and easily accessible manner.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001758
EISBN: 978-1-62708-178-8
...-crystal x-ray diffraction has as its primary goal the determination of crystal structure, the arrangement of atoms within the unit cell. If the atoms are grouped into molecules, the molecular structure is an added benefit. Once the atoms are located, interatomic bond distances and angles can be calculated...
Abstract
The primary goal of single-crystal x-ray diffraction is to determine crystal structure and the arrangement of atoms in a unit cell. This article discusses the diffraction of light through line gratings and explains the significance of crystal symmetry, space groups, and diffraction intensities. It also addresses phase and crystallographic analysis along with related challenges, and presents several application examples highlighting various experimental techniques.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... one another comes into balance to result in a zero net force and, not incidentally, a minimum potential energy state. Once at this equilibrium interatomic spacing, the atoms bond with an energy given by the depth of the well in the net potential energy curve, that is, the binding energy or bond energy...
Abstract
Joining is key to the manufacture of large or complex devices or assemblies; construction of large and complex structures; and repair of parts, assemblies, or structures in service. This article describes the three forces for joining: physical, chemical, and mechanical. It provides an overview of the joining processes, namely, mechanical fastening, integral attachment, adhesive bonding, welding, brazing, and soldering. The article concludes with information on the various aspects of joint design and location that determine the selection of a suitable joining method.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003711
EISBN: 978-1-62708-182-5
... in making bricks. Ceramics are characterized by having good compressive strength and low tensile strength. The ionic nature of the interatomic bonds produces high rigidity (stiffness) and little ductility (elasticity). Ceramics are strong; once a crack starts, it grows rapidly, leading to immediate...
Abstract
This article presents an overview of the science and engineering of materials along with suitable definitions, descriptions, and examples for better understanding for corrosionists with limited field knowledge. It begins with a detailed description of various categories of engineering materials and moves into the discussion of physical properties of materials, such as the phases, strength, conductivity, and wear. The article describes the methods used in the fabrication of engineering materials and summarizes the materials and their properties in a tabular form. The article concludes with information on material design, materials applications, and materials failure analysis.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003280
EISBN: 978-1-62708-176-4
... force between a solid surface and a second phase in either liquid or solid form. In this context, adhesion is a manifestation of the innate interatomic and intermolecular bonds that occur between the surfaces of two materials. Other meanings of adhesion also arise in different disciplines related...
Abstract
This article describes measurement techniques for the three basic types of adhesion: fundamental adhesion, thermodynamic adhesion, and practical adhesion. It discusses common measurement methods for each type of adhesion with the main focus on practical adhesion testing of coatings and thin films. The article provides an insight into the mechanisms of environmentally induced interfacial degradation by discussing the fundamental aspects of adhesion between two dissimilar materials. It examines the use of adhesion tests in the evaluation of stress-corrosion cracking within bimaterial interfaces. Testing techniques for <i>in situ</i> environmental testing of thin-film adhesion are also reviewed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001378
EISBN: 978-1-62708-173-3
... the destruction of the surface (that is, oxide) layers of the metallic materials in the weld area. This exposes areas of clean metal surface on the two components to be welded, which must be brought into contact with each other to generate the interatomic forces needed to form a weld. Examinations of butt-welded...
Abstract
Cold pressure welding can be accomplished by deforming in a lap or butt configuration, drawing, extrusion, and rolling. This article provides a discussion on cold pressure lap welding, cold pressure butt welding and cold pressure welding in drawing process with illustrations. It provides information on the combinations of metals that can be successfully cold welded.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006379
EISBN: 978-1-62708-192-4
..., the separation process involves breaking interatomic bonds, the number (and possibly strength) of which depends on crystallographic orientation, so that surface energy varies from one crystal face to another ( Ref 5 ). Surface Energy and Surface Forces In conducting the thought experiment described...
Abstract
This article first describes surface forces, and the methods of measuring them, followed by a discussion on adhesion. It discusses the instrumental requirements and techniques, including Atomic Force Microscopy (AFM), used for the measurement of surface forces. Measurements of surface roughness, with AFM, can provide a precise picture of surface roughness and can be used as input for contact mechanics computer models. The article also describes microscale adhesion and adhesion measurement methods using microelectromechanical systems technologies. It reviews certain considerations used for the measurement of adhesion, such as fundamental adhesion measurements, history dependence and sample preparation, and practical adhesion measurements. The article describes various arrangements that can be employed in adhesion tests.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003458
EISBN: 978-1-62708-195-5
...Abstract Abstract This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article...
Abstract
This article discusses three typical repair types for composite structures: temporary repairs, adhesively bonded repairs, and bolted repairs. It contains a table that lists general design requirements and considerations for the repair of composite structures. The article describes ten steps for an engineering repair approach to effectively restore structural integrity to damaged composite components. Management, validation and certification of repairs are also discussed. The article presents the design guidelines for analyzing the damage and possible strategies for making a repair. It reviews three repair schemes used in repair design analysis, namely, core replacement, adhesively bonded patch, and mechanically fastened patch. The article also emphasizes the various pitfalls and problems in repair design for composite structures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003205
EISBN: 978-1-62708-199-3
... by a single trip through a brazing furnace or a dip pot. Metal as thin as 0.01 mm (0.0004 in.) and as thick as 150 mm (6 in.) can be brazed. Brazed joint strength is high. The nature of the interatomic (metallic) bond is such that even a simple joint, when properly designed and made, will have strength...
Abstract
This article discusses different types of joining processes, including welding, brazing, soldering, mechanical fastening, and adhesive bonding. It examines two broad classes of welding: fusion welding and solid-state welding. The article discusses the process selection considerations for welding, brazing, and soldering. It also describes joint design considerations such as selection of weld joints and welds.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001348
EISBN: 978-1-62708-173-3
...Abstract Abstract This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties...
Abstract
This article reviews quantifying adhesion, bonding, and interfacial characterization and strength in a solid-state welding process. It discusses metal-metal configurations and provides information on experimental work carried out in measuring the mechanical properties of interfaces based on theoretical analysis. A discussion on the properties affecting adhesion is also provided.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005715
EISBN: 978-1-62708-171-9
.... 1a and 1b ). In many cases, it is necessary to coat certain areas off-normal due to the complex shape of the parts. Any deviation from normal can have a negative impact on coating properties. For example, bond strength, porosity, and coating cohesion will be compromised. The planning of a coating...
Abstract
Thermal spray coating involves certain precoating operations, such as cleaning, surface preparation, and masking, that are critical to the overall quality of the coating system. In addition to these, certain other elements are considered prior to the coating, namely, customer requirements, coating function, part geometry, substrate metallurgy, structure, and thermal history. This article provides a detailed account of the various processes of surface preparation, namely, cleaning, roughening, dry abrasive grit blasting, and machining and macro roughening processes. It outlines the masking and fixturing techniques and stripping of coatings.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002464
EISBN: 978-1-62708-194-8
... that a primary covalent bond does; therefore, the energy required to break secondary bonds is less than the 300 to 420 kJ/mol ( Ref 21 ) strength of covalent bonds. The interatomic distance of covalent bonds is quite short, generally between 1 and 2 Å ( Ref 21 ). When primary, or covalent, bonds join adjacent...
Abstract
This article discusses the most fundamental building-block level, atomic level, molecular considerations, intermolecular structures, and supermolecular issues. It contains a table that shows the structures and lists the properties of selected commodity and engineering plastics. The article describes the effects of structure on thermal and mechanical properties. It reviews the chemical, optical, and electrical properties of engineering plastics and commodity plastics. An explanation of important physical properties, many of which are unique to polymers, is also included. The factors that must be considered when processing engineering thermoplastics are discussed. These include melt viscosity and melt strength; crystallization; orientation, die swell, shrinkage, and molded-in stress; polymer degradation; and polymer blends.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002488
EISBN: 978-1-62708-194-8
... and cast alloys can be turned into integral components by a single trip through a brazing furnace or a dip pot. Metal as thin as 0.01 mm (0.0004 in.) and as thick as 150 mm (6 in.) can be brazed. Brazed joint strength is high. The nature of the interatomic (metallic) bond is such that even a simple...
Abstract
This article explains how to design a joint or conduct a joining process so that components can be produced most efficiently and without defects. The joining processes include mechanical fastening, adhesive bonding, welding, brazing, and soldering. The article discusses the selection and application of good design practices based on the understanding of process-related manufacturing aspects such as accessibility, quality, productivity, and overall manufacturing cost. It provides several examples of selected parts and joining processes to illustrate the advantages of a specific design practice in improving manufacturability.
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005725
EISBN: 978-1-62708-171-9
... preparation target efficiency thermal spray coating undercutting SEVERAL KEY PROCESSING STEPS are required to produce optimized thermal spray coatings. For example, to ensure adequate bonding of a coating, it is critical that the substrate be properly prepared. The substrate surface must be clean...
Abstract
This article begins with a description of the advantages and disadvantages of thermal spraying. It provides a discussion on the importance of substrate processing prior to coating and the role of undercutting in repair. The article reviews the steps for substrate preparation, namely, cleaning, roughening, masking, and preheating. Information on the equipment and process variables of dry abrasive grit blasting are also provided. The article describes the roles of spray stream and the spray pattern for all thermal spray processes. It discusses the defects arising from poor temperature control and from the variables influencing the manipulation of the spray torch. The article concludes with helpful information on calculating the process efficiency of thermal spraying.