Skip Nav Destination
Close Modal
By
John E. Allison, Mei Li, XuMing Su
By
Jiadong Gong, Thomas Kozmel
By
D.U. Furrer, S. L. Semiatin
By
D.U. Furrer, S.L. Semiatin
By
William E. Frazier, Yan Lu, Paul Witherell, Alex Kitt
By
Sameehan S. Joshi, Narendra B. Dahotre
By
Scott Reeve
By
Andrew C. Bobel, Anil K. Sachdev, Tyson W. Brown
By
Sudarsanam Suresh Babu
By
Yan Lu, Milica Perisic, Albert Jones
By
William E. Frazier, Khalid Rafi, Mohsen Seifi
By
Sudarsanam Suresh Babu
Search Results for
integrated computational material engineering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 923
Search Results for integrated computational material engineering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Integrated Computational Materials Engineering
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005427
EISBN: 978-1-62708-196-2
... Abstract Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering...
Abstract
Integrated computational materials engineering refers to the use of computer simulations that integrate mathematical models of complex metallurgical processes with computer models used in component and process design. This article outlines an example of a computer-aided engineering tool, such as virtual aluminum castings (VAC), developed and implemented for quickly developing durable cast aluminum power train components. It describes the procedures for the model development of the VAC system. These procedures include linking the manufacturing process to microstructure, linking microstructures to mechanical properties, linking material properties to performance prediction, and model validation and integration into the engineering process. The article discusses the benefits of the VAC system in process selection, process optimization, and improving the component design criteria.
Image
Integrated computational materials engineering—a new paradigm for the globa...
Available to Purchase
in The Application of Thermodynamic and Material Property Modeling to Process Simulation of Industrial Alloys
> Metals Process Simulation
Published: 01 November 2010
Fig. 35 Integrated computational materials engineering—a new paradigm for the global materials profession. Adapted from Ref 144
More
Book Chapter
Aluminum Alloy Design for Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006970
EISBN: 978-1-62708-439-0
... on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength...
Abstract
Additive manufacturing (AM) has gained increased significance and has been adopted across many industries for various applications. Specific net-shape AM fabrication methods, such as laser powder-bed fusion (LPBF), have matured significantly, leading to aerospace sector R&D focused on the feasibility of using flagship alloys to manufacture complex components. This article presents one example of an aluminum alloy design tailored for laser powder-bed fusion AM. It discusses the integrated computational materials engineering design approach. The article also presents the design for high-strength, high-temperature aluminum alloys.
Image
Technology hierarchy resting on a rocky political, economic, social, and te...
Available to Purchase
in Qualification of Metal Additive Manufacturing Processes
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 9 Technology hierarchy resting on a rocky political, economic, social, and technology landscape. ICME, integrated computational materials engineering; AI, artificial intelligence; ML, machine learning
More
Book Chapter
Introduction to Fundamentals of Modeling for Metals Processing
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005425
EISBN: 978-1-62708-196-2
... or highly demanding applications. The recent development of the integrated computational materials engineering (ICME) discipline allows fundamental research to be linked to industrial applications ( Ref 1 ). See the article “Integrated Computational Materials Engineering” in this Volume...
Abstract
This article provides a brief historical perspective, a classification of metallurgical processes, basic model development efforts, and an overview of the potential future directions for the modeling of metals processing. It describes the classification of material behavior models, which can be grouped broadly into three classes: statistical, phenomenological, and mechanistic models. The article also presents an overview of the potential directions for the modeling of metals processing.
Book Chapter
Introduction to Metals Process Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005538
EISBN: 978-1-62708-197-9
... property models. Within an integrated computational materials engineering approach to alloy design, organizations are working to identify the metallurgical mechanisms that control or could control the behavior of an alloy during a specified-use application. Using simulation tools to assess variations...
Abstract
This article discusses process simulation applications such as casting, powder metallurgy, machining, surface engineering, heat treatment, and joining. The implementation of modeling and simulation tools requires accurate descriptions of material properties and process boundary conditions. The article describes the role of input data and boundary conditions for process simulations. It provides information on the critical enablers of computational materials engineering, such as the computational speed, computational materials engineering software/hardware supply chain, and cost structure for virtual versus physical manufacturing and analysis.
Book Chapter
FAIR Additive Manufacturing Data Management Principles
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006979
EISBN: 978-1-62708-439-0
... for their development are found in Ref 7 to 10 . Integrated computational materials engineering tools are also being developed. Additionally, modeling and simulation tools, artificial intelligence (e.g., machine learning, neural networks, etc.), and new testing methodologies are being employed. Application...
Abstract
This article details findability, accessibility, interoperability, and reusability (FAIR) additive manufacturing data management principles and examines related motivations, benefits, and challenges. It explains opportunities to advance the state of the AM community efforts in fostering FAIR data management practices/principles and outlines the consequence of such efforts on technology maturation and industrialization for AM technologies.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... Abstract The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Laser Surface Engineering for Tribology
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006421
EISBN: 978-1-62708-192-4
... capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling. chemical cleanliness laser surface heating laser surface melting laser patterning laser dimpling laser-synthesized coatings lubricated environment nonlubricated...
Abstract
Lasers evolved as a versatile materials processing tool due to their advantages such as rapid, reproducible processing, chemical cleanliness, ability to handle variety of materials, and suitability for automation. This article focuses on state-of-the-art laser applications to improve tribological performance of structural materials in lubricated and nonlubricated environments. It discusses the fundamentals of various laser materials interactions and reviews laser-based surface-modification strategies, including laser surface heating and melting, laser-synthesized coatings, and laser-based design approaches such as laser patterning and dimpling. Laser-surface modification of novel materials, such as high-entropy alloys and metallic glasses, is explored. The article provides an overview of hybrid techniques involving laser as a secondary tool, as well as a discussion on the improved capabilities of laser surface engineering for tribological applications by means of integrated computational process modeling.
Book Chapter
Introduction to Engineering Mechanics, Analysis, and Design
Available to PurchaseBook: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003376
EISBN: 978-1-62708-195-5
... Abstract Composite materials offer amazing opportunities for delivering structures that are optimized to meet design requirements. This article provides a summary of the concepts discussed in the articles under the section “Engineering Mechanics, Analysis, and Design” in ASM Handbook, Volume 21...
Abstract
Composite materials offer amazing opportunities for delivering structures that are optimized to meet design requirements. This article provides a summary of the concepts discussed in the articles under the section “Engineering Mechanics, Analysis, and Design” in ASM Handbook, Volume 21: Composites. The section introduces many of the engineering approaches used in composite industry.
Book Chapter
Software for Computational Materials Modeling and Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
... include alternating/direct current, microelectromechanical systems, radio frequency, Optimization Lab, acoustics, heat transfer, structural mechanics, computer-aided design import, chemical engineering, COMSOL Reaction Engineering Lab, and Materials Library. COMSOL AB www.comsol.com DANTE DANTE...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Book Chapter
Laser Powder-Bed Fusion Additive Manufacturing of Structural Automotive Components
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006957
EISBN: 978-1-62708-439-0
... exploiting developments occurring in the integrated computational materials engineering framework ( Ref 9 ). Two new alloys described in this article are targeted for either improving the high-temperature strength of aluminum or for reducing the cost of a high-strength steel. A key processing feature...
Abstract
High-volume additive manufacturing (AM) for structural automotive applications, along the lines of economically viable technologies such as powder metallurgy, castings, and stampings, remains a lofty goal that must be realized to obtain the well-known advantages of AM. This article presents two key opportunities for AM related to automotive applications, specifically within the realm of metal laser powder-bed fusion: alloys and product designs capable of high throughput. The article also presents the general methodology of alloy development for automotive AM. It provides examples of unique designs for reciprocating components in elevated-temperature applications that are also exposed to demanding tribological conditions. The article also discusses the future of AM for automotive applications.
Book Chapter
Introduction to Integrated Weld Modeling
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005524
EISBN: 978-1-62708-197-9
... that the engineering solutions for joining materials are not unique and do differ depending on the geometry, materials, and applications. Due to this complexity of the problem, the development of joining technology for a given material is associated with extensive experimental trial-and-error optimization. To minimize...
Abstract
This article provides an overview of integrated weld modeling and presents strategic goals for the welding industry. It discusses the fundamentals of the underlying physics and the methodologies to solve the same. The article presents the pioneering work done to predict the heat-affected zone and weld metal microstructure in the early 1980s and 1990s. Applications of computational thermodynamics and kinetics tools to weld metal microstructure prediction for liquid-gas reactions and liquid-slag reactions that happen as a function of high-to-low temperature during fusion welding are discussed. The article also includes a brief discussion on weldability prediction, residual stress prediction, and distortion prediction. It concludes with information on the use of optimization methodologies.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002456
EISBN: 978-1-62708-194-8
... strength of 4340 steel, tempered at 400 °F, is 270 ksi.” The integration of these information bases is accomplished by inference engines, typically embedded in expert system shells, or by computer languages based on some form of logic search rule (e.g., use of unification and resolution algorithms...
Abstract
This article provides a description of various systems for computer-aided materials selection that deals primarily with promising prototypes that have emerged for various applications. These include expert systems, quantitative selection systems, qualitative and experiential selection systems, and object-oriented systems.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002479
EISBN: 978-1-62708-194-8
... and bolts, computers, electrical transformers, portable phones, automobiles, machine tools, construction equipment, consumer products, and aircraft are all engineered designs. In engineered designs, materials and methods of manufacture are typically selected to meet functionality, performance, cost...
Abstract
This article describes the general concepts and practices related to manufacturing and design. It discusses the activities of design and manufacturing by placing it in the context of the business system that they support. The article presents an overview of the manufacturing technology field from a design and material selection perspective. It provides an insight to the complex relationship among design, material selection, and manufacturing. The article offers information on modern design for manufacturing practices that are widely used in the industry.
Book Chapter
Additive Manufacturing Data Integration and Recommended Practice
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006965
EISBN: 978-1-62708-439-0
... advantage of an RDBMS is that most engineers know this technology, and the commercial DBMS tools have integrations with many external tools. Also, because metadata in AM production processes do not often change, document databases could be used, such as NIST’s Additive Manufacturing Materials Database (AMMD...
Abstract
Additive manufacturing (AM) creates parts layer by layer directly from three-dimensional computer-aided design data. This article discusses systematic ways to address the challenges in AM data integration by exploring various AM-specific data-integration scenarios that can improve the current AM ecosystem. Representative AM data sources are also described. A reference framework that captures the heterogenous AM data sources and existing data-integration mechanisms are used. General data-integration practices—based on existing manufacturing data and lab information system integration experiences—are recommended to automate AM data flow, operations, and development. Lastly, the article discusses the seven steps in the big-data-integration workflow.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... of integrated computational materials engineering (ICME) has also emerged in materials selection. This goes one step further and is intended to actually design materials for specific applications by modeling processing/structure/property relationships. It is necessary in ICME to use a number of different models...
Abstract
Materials selection is closely related to the objectives of failure analysis and prevention. This article briefly reviews the general aspects of materials selection as a concern in both proactive failure prevention during design and as a possible root cause of failed parts. Coverage is more conceptual, with general discussions on the following topics: design and failure prevention, materials selection in design, materials selection for failure prevention, and materials selection and failure analysis. Because materials selection is just one part of the design process, the overall concept of design is discussed. The article also describes the role of the materials engineer in the design and materials selection process. It provides information on the significance of materials selection in both the prevention and analysis of failures.
Book Chapter
Qualification of Metal Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007022
EISBN: 978-1-62708-439-0
... approach. The key elements of the future state are likely to include the integrated application of: Integrated computational materials engineering (ICME) Machine learning and artificial intelligence In situ process sensors and feedforward, adaptive process controls Standards (process...
Abstract
The qualification of additive manufacturing (AM) processes and the certification of AM parts is recognized as a significant impediment to the rapid, low-cost deployment of AM manufacturing. The challenges are multifaceted; however, it is an attempt to apply conventional qualification approaches to an inherently different process that has caused the most difficulty. This article examines the conventional qualification methodology and explores how the unique characteristics of AM pose a set of qualification challenges. The extant approach to the qualification of AM processes is described, followed by a discussion on a possible future state.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002176
EISBN: 978-1-62708-188-7
... machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number...
Abstract
This article describes the basic functions that should be included when considering the relationship of computer-aided design (CAD)/computer-aided manufacturing (CAM) and machining. These include design, analysis, drafting, process planning, part programming, program verification, part machining, and inspection. The article provides information on hardware, data base, interfaces, and benefits of integrating machining with the CAD/CAM system of a manufacturing plant. It also provides an overview of direct, computer and, distributed numerical control, which are devoid of a number of problems inherent in conventional numerical control.
Book Chapter
Introduction to Integrated Weld Modeling
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005561
EISBN: 978-1-62708-174-0
... of the problem, the development of joining technology for a given material is associated with extensive experimental trial-and-error optimization. To minimize this experimental approach, an integrated computational modeling was suggested as a solution ( Fig. 1 ). Fig. 1 Suggested roadmap...
Abstract
This article provides an overview of integrated weld modeling and discusses the fundamentals of the underlying physics and methodologies involved in process modeling. It presents approaches for microstructure modeling that help to predict phase fractions as well as grain size in the heat-affected zone and weld metal region as a function of alloy composition and thermal cycles. The article discusses the uses of computational thermodynamic and kinetic tools. It describes the concept of performance modeling, whose goal relates to the prediction of weldability, geometrical distortion, and/or locked-in residual stress as a function of material, restraint, process, and process parameters as well as service temperature. Finally, the article presents a case study, evaluating the use of X-65 steels using the E-WeldPredictor tool.
1