Skip Nav Destination
Close Modal
Search Results for
integral molar properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 86 Search Results for
integral molar properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005191
EISBN: 978-1-62708-187-0
... properties, and integral molar properties for selected aluminum-based and copper-based alloys. liquid aluminum-base alloys copper-base alloys phase diagrams thermodynamic properties activity coefficients partial molar thermal properties integral molar properties aluminum-base alloys...
Abstract
This article provides accessible information on the thermodynamic properties of liquid aluminum-base and copper-base alloys with the help of phase diagrams. It contains tables that compile the thermodynamic data in the form of activities, activity coefficients, partial molar thermal properties, and integral molar properties for selected aluminum-based and copper-based alloys.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005189
EISBN: 978-1-62708-187-0
... coefficient for 1 wt% standard state F * Integral free energy of solution F Faraday's constant G i Gibbs free energy of component i Δ G Integral molar free energy Δ G ¯ i Partial molar free energy of component i Δ G i o Molar free energy...
Abstract
This article introduces the fundamental concepts of chemical thermodynamics and chemical kinetics in describing presolidification phenomena. For metallurgical systems, the most important thermodynamic variables are enthalpy and Gibbs free energy. A qualitative demonstration of the interrelationship between phase diagrams and thermodynamics is presented. The article discusses processes that generally limit the rates of chemical processes. These include nucleation of the product phase and interphase mass transport. The article provides a discussion on the dissolution of alloy with melting point lower than bath temperature and dissolution of alloy that is solid at bath temperatures.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006223
EISBN: 978-1-62708-163-4
.... For alloys with compositions near the crossover in the G curves, the situation is not so straightforward. In this case it can be shown that the total free energy can be minimized by the atoms separating into two phases. It is first necessary to consider a general property of molar free-energy diagrams...
Abstract
Thermodynamic descriptions have become available for a large number of alloy systems and allow the calculation of the phase diagrams of multicomponent alloys. This article begins with a discussion on three laws of thermodynamics: the Law of Conservation of Energy, the Second Law of Thermodynamics, and the Third Law of Thermodynamics. It informs that for transformations that occur at a constant temperature and pressure, the relative stability of the system is determined by its Gibbs free energy. The article describes the Gibbs free energy of a single-component unary system and the Gibbs free energy of a binary solution. It schematically illustrates the structure of a binary solid solution with interatomic bonds and shows how the equilibrium state of an alloy can be obtained from the free-energy curves at a given temperature. The article concludes with information on the construction of eutectic and binary phase diagrams from Gibbs free-energy curves.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... with mechanical property prediction models, the strain, distortion, cracking, residual stress, and related properties can be predicted. Fig. 13 Comparison between the calculated dilation versus temperature and the experimental data ( Ref 45 ) for steel 6-6-2, a high-speed tool steel Integration...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... opportunities for interdisciplinary collaborations to apply techniques from different fields of study to characterize single systems. As was highlighted in the 1986 introduction and still very relevant today, the collaborative approach of team-building and integrating scientists and engineers of different...
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003364
EISBN: 978-1-62708-195-5
..., however, is a function of the BMI-DABA ratio employed in the resin mix. In one study, optimized toughness properties were achieved when BMI and DABA were employed at a close to 2:1 molar ratio ( Ref 16 ), as can be seen from Table 3 . Properties of BMI/DABA copolymers Table 3 Properties of BMI...
Abstract
This article discusses bismaleimide (BMI) chemistry and the use of BMI in composites. An analysis of the applications illustrates how the advantages of BMIs have been exploited and perhaps suggests how these advantages might be extended to other applications. The article describes the mechanical properties of BMI composites. BMIs suitable for resin transfer molding processing are provided. The article concludes with information on the elevated-temperature applications of 5250-4 BMI system.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003589
EISBN: 978-1-62708-182-5
... the Pilling-Bedworth molar volume ratio is: (Eq 2) Volume of 1 mol of Al 2 O 3 Volume of 2 mol of Al = 1.287 where the volumes are calculated from molecular and atomic weights and the densities of the phases. If the ratio is less than 1, the oxide scales are usually...
Abstract
This article describes the Schottky defect and the Frenkel defect in oxides. It provides information on the p-type metal-deficit oxides and n-type semiconductor oxides. The article discusses diffusion mechanisms and laws of diffusion proposed by Fick. It explains the oxide texture of amorphous and epitaxy oxide layers and presents equations for various oxidation reaction rates. The article reviews different theories to describe the oxidation mechanism. These include the Cabrera-Mott, Hauffe-IIschner, Grimley-Trapnell, Uhlig, and Wagner theories.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... of a phase-field model to a specific alloy involves matching a number of model parameters to material-specific properties. Referring to Eq 5 , 6 , and 12 , these model parameters include the chemical free energy, f m , gradient coefficient, κ m , kinetic coefficients M and L , and molar volume...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001731
EISBN: 978-1-62708-178-8
..., T Path length, b … l, d Absorptivity, a A / bc Extinction coefficient, k Molar absorptivity, ϵ A / bc Molar extinction coefficient Fig. 3 Exponential decay of radiant power as a function of path length. Note that the exponential decrease...
Abstract
Ultraviolet/visible (UV/VIS) absorption spectroscopy is a powerful yet cost-effective tool that is widely used to identify organic compounds and to measure the concentration of principal and trace constituents in liquid, gas, and solid test samples. This article emphasizes the quantitative analysis of elements in metals and metal-bearing ores. The instrumentation required for such applications consists of a light source, a filter or wavelength selector, and some type of visual or automated sensing mechanism. The article examines common sensing options and provides helpful information on how to set up and run a variety of UV/VIS absorption tests.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001732
EISBN: 978-1-62708-178-8
... fundamental applications that include studies of electronic properties of organic and inorganic molecules in gas, liquid, and solid phases. Fluorescence spectroscopy is routinely used for chemical analysis of various samples, including those of forensic, environmental, toxicological, clinical, biochemical...
Abstract
This article provides an introduction to the molecular fluorescence spectroscopy, and discusses the theory of fluorescence and its application to chemical analysis. It provides information on fluorescence that occurs in organic compounds and inorganic atoms and molecules. The article describes the instruments used in the spectroscopy, namely, radiation sources, sample holders, wavelength selectors, detectors, computers, and ratiometric instruments. The practical considerations include solvent effects, corrected spectra, wavelength calibration, temperature, and scattered light. The article also discusses the uses of some special techniques used in molecular fluorescence spectroscopy.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003066
EISBN: 978-1-62708-200-6
... in predictable ways. For example, for selenides of the type Ge-As-Se, the glass transformation temperature, hardness, Young's modulus, and strength increase, while the thermal expansion coefficient and molar volume decrease with a tighter structure. The properties of these glasses also depend on the type...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
... composition and properties. Conversely, substrate heating is usually not mandatory for deposition. Collisions in the gas phase are usually negligible in PVD systems operating under ultrahigh vacuum but not completely in systems operating in the pressure range of 0.1 to 1 Pa, in the transition regime (see...
Abstract
This article focuses on transport phenomena and modeling approaches that are specific to vapor-phase processes (VPP). It discusses the VPP for the synthesis of materials. The article reviews the basic notions of molecular collisions and gas flows, and presents transport equations. It describes the modeling of vapor-surface interactions and kinetics of hetereogeneous processes as well as the modeling and kinetics of homogenous reactions in chemical vapor deposition (CVD). The article provides information on the various stages of developing models for numerical simulation of the transport phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition and reactive or ion beam etching.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... integration or biodegradability have replaced alumina ceramics where that property is critical, including stabilized zirconia and zirconia-toughened alumina. Stabilized Zirconia Stabilized zirconia was introduced to the bioceramics field due to the demand for ceramics with better physical...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005517
EISBN: 978-1-62708-197-9
... involved. For individual phases in multicomponent systems, properties such as molar volume, thermal conductivity, Young's modulus, Poisson's ratio, and so on are modeled using pairwise mixture models, similar to those used to model thermodynamic excess functions in multicomponent alloys (see...
Abstract
This article presents the background to the CALculation of PHAse Diagrams (CALPHAD) method, explaining how it works, and how it can be applied in industrial practice. The extension of CALPHAD methods as a core basis for the modeling of generalized material properties is explored. It informs that one of the aims of CALPHAD methods has been to calculate phase equilibria in the complex, multicomponent alloys that are used regularly by industry. The article discusses the application of CALPHAD calculations to industrial alloys. Modeling of general material properties, such as thermophysical and physical properties, temperature- and strain-rate-dependent mechanical properties, properties for use in the modeling of quench distortion, and properties for use in solidification modeling, is also reviewed. The article also describes the linking of thermodynamic, kinetic, and material property models.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.9781627081962
EISBN: 978-1-62708-196-2
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005206
EISBN: 978-1-62708-187-0
... change of state of a chemical system following the laws of thermodynamics is called chemical thermodynamics. The thermodynamic properties of individual phases can be used for evaluating their relative stability and heat evolution during phase transformations or reactions. Traditionally, the most common...
Abstract
This article discusses the application of thermodynamic in the form of phase diagrams for visually representing the state of a material and for understanding the solidification of alloys. It presents the derivation of the relationship between the Gibbs energy functions and phase diagrams, which forms the basis for the calculation of phase diagrams (CALPHAD) method. The article also discusses the calculation of phase diagrams and solidification by using the Scheil-Gulliver equation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005430
EISBN: 978-1-62708-196-2
... = entropy of vacancy migration (J/K) t = time (s) T = temperature (K) V m = molar volume of a phase (m 3 /mol) x i = mole fraction of component i y i α , y i β = site fractions of component i on the α and β sublattices, respectively Y i...
Abstract
Diffusion is the process by which molecules, atoms, ions, point defects, or other particle types migrate from a region of higher concentration to one of lower concentration. This article focuses on the diffusivity data and modeling of lattice diffusion in solid-state materials, presenting their diffusion equations. It discusses different methods for evaluating the diffusivity of a material, including the measurement of diffusion coefficients, composition profiles, and layer growth widths. The article reviews the various types of direct and indirect diffusion experiments to extract tracer, intrinsic, and chemical diffusivities. It provides information on the applications of single-phase and multiphase diffusion.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... Abstract This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003010
EISBN: 978-1-62708-200-6
... curing and curing agents. The article provides descriptions of commercial product forms and the wide array of applications of thermosetting resins. It also tabulates the performance properties (mechanical, thermal, electrical and chemical resistance) of some families of unfilled or unreinforced...
Abstract
A thermosetting resin, or thermoset, is a synthetic organic polymer that cures to a solid, infusible mass by forming a three-dimensional network of covalent chemical bonds. Significant applications include construction and thermoset engineering plastics. This article discusses the general and family characteristics of thermosetting resin families, including allyls, aminos (urea formaldehyde and melamine formaldehyde), cyanates, epoxies, polybenzimidazoles, unsaturated polyesters, thermoset polyimides, phenolics, and vinyl esters. It also explains processing methods, including curing and curing agents. The article provides descriptions of commercial product forms and the wide array of applications of thermosetting resins. It also tabulates the performance properties (mechanical, thermal, electrical and chemical resistance) of some families of unfilled or unreinforced thermosetting resins and reinforced or filled grades.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... products. This workhorse glass type varies only slightly in composition from one application to the next, and it is more likely to be influenced by regional raw material price and availability than other factors. As a result, the compositional and, therefore, physical and chemical property diversity...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
1