Skip Nav Destination
Close Modal
By
S.S. Glickstein, E. Friedman, R.P. Martukanitz
By
S.S. Glickstein, E. Friedman
By
Anil Chaudhary
By
Edgar Rapoport, Yulia Pleshivtseva
By
K. Sampath, W.A. Baeslack III
By
John Goldak, Mahyar Asadi, Lennart Karlsson
By
John Goldak, Moashi Gu, Lennart Karlsson
By
S.D. Brandi, S. Liu, R.D. Thomas, Jr.
By
Gang Wang, Yiming Rong, Richard D. Sisson, Jr.
By
Egbert Baake, Bernard Nacke
Search Results for
input-energy distribution
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 722
Search Results for input-energy distribution
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... Abstract Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Book Chapter
Characterization and Modeling of the Heat Source
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
... Abstract This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes. arc welding...
Abstract
This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes.
Image
Published: 31 October 2011
Fig. 6 Weld bead dimensions for different durations of heating, t *, and input-energy distribution parameter, r ′, with Q o = 1060 W. Source: Ref 10
More
Image
Published: 01 January 1993
Fig. 5 Weld-bead dimensions for different durations of heating, t *, and input-energy distribution parameter, r ′. Q o = 1060 W. Source: Ref 10
More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005588
EISBN: 978-1-62708-174-0
.... A normal distribution of the welding heat flux is obtained if the weight constant is zero. For the conventional welding processes, a normal distribution is usually adequate for predicting thermal responses of a material. In general, the total energy input to the weldment, which is a fraction...
Abstract
The finished product, after fusion welding, may contain physical discontinuities due to excessively rapid solidification, adverse microstructures due to inappropriate cooling, or residual stress and distortion due to the existence of incompatible plastic strains. To analyze these problems, this article presents an analysis of the welding heat flow, with focus on the fusion welding process. It discusses the analytical heat-flow solutions and their practical applications. The article concludes with a description of the effects of material property and welding condition on the temperature distribution of weldments.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001333
EISBN: 978-1-62708-173-3
..., and v is welding speed. The volumetric heat source represents the Joule heating in the weldment that is due to the electric current flow within that conducting medium. The total energy of such heating in welding is usually minimal, compared to the arc heat input. The majority of the energy...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source cause physical state changes, metallurgical phase transformation, and transient thermal stress and metal movement. This article presents an analysis of heat flow in the fusion welding process. The primary objective of welding heat flow modeling is to provide a mathematical tool for thermal data analysis, design iterations, or the systematic investigation of the thermal characteristics of any welding parameters. The article addresses analytical heat-flow solutions and their practical applications. It describes the effects of material property and welding condition on the temperature distribution of weldments. The thermal properties of selected engineering materials are provided in a table.
Book Chapter
Software for Computational Materials Modeling and Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005544
EISBN: 978-1-62708-197-9
..., quantum chemistry) Table 1 Electronic structure methods (density functional theory, quantum chemistry) Inputs: atomic number, mass, valence electrons, crystal structure and lattice spacing, Wyckoff positions, atomic arrangement. Outputs: electronic properties, elastic constants, free energy vs...
Abstract
This article demonstrates the depth and breadth of commercial and third-party software packages available to simulate metals processes. It provides a representation of the spectrum of applications from simulation of atomic-level effects to manufacturing optimization. The article tabulates the software name, function or process applications, vendor or developer, and website information.
Book Chapter
Modeling of Laser-Additive Manufacturing Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
.... A common feature of these processes is that, at any time, the joining of new material occurs over a region that is small compared to the substrate dimensions. This region moves in tandem with the input energy source. Within this region, the substrate and the material deposit experience intensely nonlinear...
Abstract
Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation; heat conduction, convection, and phase change; and elastic-plastic deformation. It provides a description of four sets of data used for modeling and simulation of additive manufacturing processes, namely, material constitutive data, solid model, initial and boundary conditions, and laser deposition process parameters. The article considers three aspects of simulation of additive manufacturing: simulation for initial selection of process parameter setup, simulation for in situ process control, and simulation for ex situ process optimization. It also presents some examples of computational mechanics solutions for automating various components of additive manufacturing simulation.
Book Chapter
Optimal Control of Induction Heating of Metals Prior to Warm and Hot Forming
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005893
EISBN: 978-1-62708-167-2
....). Optimization Problems for Induction Mass Heating Processes This section discusses induction heating as a process under optimal control, mathematical models of a heating process, cost criteria, requirements to final temperature distribution within heated workpieces, control inputs, constraints...
Abstract
This article describes the effects of furnace atmospheric elements, including air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide, on steels. It provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of the method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and typical applications.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005438
EISBN: 978-1-62708-196-2
... Model Many high-performance alloys depend on fine precipitates to provide superior strength. A useful mechanistic and analytical precipitation-strengthening model takes precipitation microstructure (size, fraction, and distribution) as an input and provides an estimate of yielding stress. Depending...
Abstract
This article provides guidelines for the assessment of model quality in materials science and engineering. It discusses the fundamentals of model quality assessment and the calibration of mechanistic material models. The article reviews the considerations for the model verification during software implementation planning to identify suitable programs, software components, and programming languages. It describes the validity tests used in model validation, including boundary-value tests, degenerate problem tests, sensitivity tests, and benchmarking. The article also presents an example of model calibration, verification, and validation for the prediction of martensite start temperature of steels.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005719
EISBN: 978-1-62708-171-9
... and the current supplied by the system. Depending on losses to the water cooling, the electrical to thermal conversion efficiency of a plasma spray gun ranges from 42 to 65% of the power input to the gun. The heating power is measured by the specific gas enthalpy, which is the energy per unit mass of gas...
Abstract
This article discusses various control processes carried out in powder feeding, thermal spraying, and gas flow of the thermal spray process to standardize the coating quality. Quality of the entire powder feeding process can be achieved by controlling the processing of feeding equipment as well as the characteristics of the powder being fed. Gas flow control can be achieved by using rotameters, critical orifices, and thermal mass flowmeters, whose ability to provide useful information is defined by their resolution, accuracy, linearity, and repeatability. The commercial thermal spray controls discussed here include the open-loop input-based, open-loop output-based, closed-loop input-based, and closed-loop output-based or adaptive controls. The article discusses the common causes and practical solutions for arc starting problems. It also outlines certain important developments in measuring individual and collective particle velocities, temperature, and trajectories as well as other plume characteristics for the plasma spray process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... . Fig. 2 Relative heat transfer contributions to workpiece with GTAW. (a) Contribution of individual parameters to anode heat input. (b) Heat output at cathode (workpiece) relative to weld pool heat loss The Thomson effect represents the energy lost by electrons as they move from higher...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
.... Papazoglou and Masubuchi ( Ref 3 ) used a uniform density surface heat flux over the weld to simulate the welding heat input. Argyris et al. ( Ref 2 ) and Tekriwal and Mazumder ( Ref 11 ) used a surface heat flux with a Gaussian density distribution. Goldak et al. ( Ref 4 ) proposed the double-ellipsoid heat...
Abstract
Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide values for the applied welding heat input. This article describes how the solid-phase transformations that occur during the thermal cycle produced by welding lead to irreversible plastic deformation known as transformation plasticity. Residual stress and welding distortion are also discussed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002369
EISBN: 978-1-62708-193-1
... Abstract There are two parts to deal with uncertainty in fatigue design: determining the distributions of possible values for all uncertain inputs and calculating the probability of failure due to all the uncertain inputs. This article discusses the sources of uncertainty in a fatigue analysis...
Abstract
There are two parts to deal with uncertainty in fatigue design: determining the distributions of possible values for all uncertain inputs and calculating the probability of failure due to all the uncertain inputs. This article discusses the sources of uncertainty in a fatigue analysis, such as the material properties, distribution of applied stress levels within a given environment, environments or loading intensities, and modeling or prediction. It presents a probabilistic approach for analyzing the uncertainties and determining the level of reliability (probability of failure).
Book Chapter
Selection and Weldability of Dispersion-Strengthened Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... conditions such as high energy density and minimum energy input, that increase the temperature gradients in both the fusion zone and the heat-affected zone (HAZ) and increase the overall weld cooling rate, will be required to minimize the widths of the partially melted region and the HAZ. Such welding...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Book Chapter
Numerical Aspects of Modeling Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005587
EISBN: 978-1-62708-174-0
... The first assumption should be that the weld has been specified, and therefore, all information needed to produce the real weld has been given. This includes the geometry of the welded structure and the weld joint, the composition of the base and weld metal, the distribution of input energy, the preheat...
Abstract
This article is a comprehensive collection of formulas and numerical solutions, addressing many heat-transfer scenarios encountered in welds. It provides detailed explanations and dimensioned drawings in order to discuss the geometry of weld models, transfer of energy and heat in welds, microstructure evaluation, thermal stress analysis, and fluid flow in the weld pool.
Book Chapter
Numerical Aspects of Modeling Welds
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001480
EISBN: 978-1-62708-173-3
... specified and, therefore, all information needed to produce the real weld has been given. This includes the geometry of the welded structure and the weld joint, the composition of the base and weld metal, the distribution of input energy, the preheat temperature, the welding path and speed, the hydrogen...
Abstract
This article focuses on the various assumptions involved in the numerical modeling of welds, including the geometry of the welded structure and the weld joint, thermal stress, strain, residual stress, and the microstructure in the heat-affected and fusion zones.
Book Chapter
Electroslag and Electrogas Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... Abstract Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding...
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Book Chapter
Heating and Heat-Flow Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
..., including the accessories, parts, and the medium, such as air, is regarded as an independent system. Based on the energy conservation principle, the heat input is equal to the heat loss plus the storage energy. The general governing equation for the heat source is: (Eq 2) Q H S = Q M...
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Book Chapter
Introduction and Fundamental Principles of Induction Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... quantitatively as the distribution of the turbulent, kinetic energy of the melt flow. The relevant results of measurements for a trial crucible furnace are depicted in Fig. 8 together with the average flow velocity. Fig. 8 Measured distribution of the time averaged flow velocity and specific turbulent...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
1