Skip Nav Destination
Close Modal
By
Marc Sole-Gras, Yong Huang, Douglas B. Chrisey
By
Svenja Pestotnik, Prem Chahal, Lukas Stepien, A. Cagri Ulusoy, Aljoscha Roch ...
By
Dachao Li, Zhihua Pu, Xingguo Zhang, Chengcheng Li, Xiao Su ...
By
Gabriele Griffanti, Showan N. Nazhat
By
Mahsius Sami, Prativa Das, Rahim Esfandyarpour
By
Zhaohui Geng, Bopaya Bidanda
By
David L. Bourell, Joseph J. Beaman, Terry Wohlers
Search Results for
inkjet printing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 75
Search Results for inkjet printing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Two major variants of inkjet printing in biomedical manufacturing (droplet ...
Available to PurchasePublished: 12 September 2022
Fig. 2 Two major variants of inkjet printing in biomedical manufacturing (droplet size exaggerated). (a) Thermal bubble-jetting. (b) Piezoelectric inkjetting
More
Image
Piezocapacitive-based 3D-printed pressure sensor. (a) Inkjet printing metho...
Available to Purchase
in Additively Manufactured Biomedical Energy Harvesters
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 9 Piezocapacitive-based 3D-printed pressure sensor. (a) Inkjet printing method using polydimethylsiloxane (PDMS) microstructures on polyethylene terephthalate substrate. (b) Capacitance changes with a range of applicable pressure. ITO, indium tin oxide. Reproduced from Ref 123
More
Image
in Additively Manufactured Dentures, Crowns, and Bridges
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Image
Schematic illustrations for jetting technologies of 3D printing. (a) Inkjet...
Available to PurchasePublished: 12 September 2022
Fig. 1 Schematic illustrations for jetting technologies of 3D printing. (a) Inkjet printing. (b) Microvalve jetting. (c) Laser-assisted jetting
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
... Abstract Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique...
Abstract
Inkjet printing is extremely precise in terms of the ejected microdroplets (picoliter volume), contributing an unparalleled lateral resolution. Additionally, the benefits of high-speed deposition, contactless ink delivery, and the use of a range of ink materials endorse this technique as suitable for high-throughput 3D manufacturing. This article provides an overview of inkjet 3D printing (also referred to as 3D inkjetting). It then highlights the major components and accessories used in commercial and laboratory-based 3D inkjet printers. Next, the article describes the process physics of the transient phenomena involved in both binder-jetting- and direct-inkjetting-based 3D printing. It then discusses the scope and advantages of 3D inkjetting in the manufacturing of metallic, ceramic, and polymer-based biomaterials. The article also discusses several approaches and methodologies to examine the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials.
Book Chapter
Laser-Induced Forward Transfer of Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
... Abstract The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Book Chapter
Aerosol Jetting for Multifunctional Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006547
EISBN: 978-1-62708-290-7
... with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects...
Abstract
Aerosol jet printing (AJP) can digitally fabricate intricate patterns on conformal surfaces with applications that include flexible electronics and antennas on complex geometries. Given the potential performance and economic benefits, aerosol jetting was studied and compared with the well-known and competing inkjet printing (IJP). More than 35 of the most relevant, highly cited articles were reviewed, focusing on applications requiring fine features on complex surfaces. The following performance indicators were considered for the comparison of AJP and IJP, because these aspects were the most commonly mentioned within the included articles and were identified as being the most relevant for a comprehensive performance assessment: printing process, line width, overspray, complex surface compatibility, diversity of printable materials, and deposition rate. This article is an account of the results of this comparison study in terms of printing capabilities, ink requirements, and economic aspects.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser...
Abstract
Microvalve jetting, with its advantages of low cost, ease of operation, high printing speed, and ability to process living cells with high viability, has been primarily used for fabricating high-throughput drug-screening models, in vitro cellular structures for fundamental cell biology research, and cell-laden structures for regenerating tissues or organs in the human body after disease or trauma. This article provides an overview of microvalve jetting of biomaterials, including operational parameters. The jetting technologies covered are inkjet printing, microvalve jetting, and laser-assisted jetting. The parameters covered include nozzle size (nozzle inner diameter), pneumatic pressure, valve-opening time, and printing speed of microvalve jetting. Subsequently, the article discusses biomaterials for microvalve jetting in terms of biomaterial definition, required properties for a suitable biomaterial, currently used biomaterials, and cells and cellular structures. Additionally, applications of microvalve jetting in biomedical engineering are presented, which include cellular and RNA analysis, high-throughput drug screening, and tissue engineering.
Image
Robotic bioprinting devices. (a) Inkjet-based robotic arm printing platform...
Available to Purchase
in In Situ Bioprinting—Current Applications and Future Challenges
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 2 Robotic bioprinting devices. (a) Inkjet-based robotic arm printing platform with a double light-source inkjet light curing nozzle. Source: Ref 18 . Creative Commons License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/ . (b) Extrusion-based BioAssemblyBot 400 by Advanced
More
Image
Summary of the main 3D printing approaches. (a) Thermal inkjet printers ele...
Available to Purchase
in Three-Dimensional Bioprinting of Naturally Derived Protein-Based Biopolymers
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 1 Summary of the main 3D printing approaches. (a) Thermal inkjet printers electrically heat the printhead to produce air-pressure pulses that force droplets from the nozzle. Piezoelectric inkjet printers apply an electric current to the printhead, forcing the ink onto a substrate. (b
More
Image
Examples of silk 3D printing. 3D surface morphology of silk scaffold inkjet...
Available to Purchase
in Three-Dimensional Bioprinting of Naturally Derived Protein-Based Biopolymers
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 5 Examples of silk 3D printing. 3D surface morphology of silk scaffold inkjet fabricated from (a) 0.5 and (b) 1 mg/mL solutions. Reprinted with permission from Ref 99 . Copyright © 2014 American Chemical Society
More
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006550
EISBN: 978-1-62708-290-7
... of knowledge from inkjet printing in two dimensions (2D) on paper and thin substrates ( Ref 3 ), with the earliest three-dimensional (3D) object printing embodiment being ballistic particle manufacturing, developed by Masters ( Ref 4 ). Blazdell et al. were the first to apply material jetting to ceramics...
Abstract
This article discusses the advantages, limitations, and applications of material jetting of ceramics, focusing on two primary methods of droplet formation: continuous stream and drop on demand (thermal and piezoelectric) ink jetting processes.
Image
Bioprinting application of three-dimensional direct inkjetting. (a) A piezo...
Available to PurchasePublished: 12 September 2022
Fig. 8 Bioprinting application of three-dimensional direct inkjetting. (a) A piezoelectric inkjet printing system is employed to pattern different cells. (b) Schematic and (c) real-time appearance of the as-ejected droplets containing live cells. (d) High-speed cinematographic image of sinking
More
Image
Thermoreversible and photocurable hydrogels were printed in three-dimension...
Available to PurchasePublished: 12 September 2022
Fig. 10 Thermoreversible and photocurable hydrogels were printed in three-dimensional grids, and cells were further seeded in the rectangular wells using inkjet printing. Fibroblasts were printed and incubated for 24 h in culture medium (a, b) 5 cells per well and (c, d) 20 cells per well
More
Image
Piezoelectric jetting of DNA. (a) Optical images of patterns of DNA formed ...
Available to PurchasePublished: 12 September 2022
Fig. 4 Piezoelectric jetting of DNA. (a) Optical images of patterns of DNA formed by printing. (b) Fluorescence micrographs of a butterfly pattern. (c) Schematic representation of paper sensors inkjet‐printed with concatemeric fluorescence‐signaling aptamers. (d) Fluorescence response
More
Book Chapter
Piezoelectric Jetting of Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... Piezoelectric jetting of DNA. (a) Optical images of patterns of DNA formed by printing. (b) Fluorescence micrographs of a butterfly pattern. (c) Schematic representation of paper sensors inkjet‐printed with concatemeric fluorescence‐signaling aptamers. (d) Fluorescence response of the presented binary letter...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Book Chapter
Three-Dimensional Bioprinting of Naturally Derived Protein-Based Biopolymers
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... by the computer software Deposition of the material into a final shape by the hardware Material testing The most common strategies applied for bioprinting are inkjet ( Fig. 1a ), extrusion ( Fig. 1b ), and laser-based printing ( Fig. 1c ) ( Ref 18 ). However, more recently, a new unconventional...
Abstract
This article discusses the state of the art in the 3D bioprinting field. It examines the printability of protein-based biopolymers and provides key printing parameters, along with a brief description of the main current 3D bioprinting approaches. The article presents some studies investigating 3D bioprinting of naturally derived proteins for the production of structurally and functionally biomimetic scaffolds, which create a microenvironment for cells resembling that of the native tissues. It describes key structural proteins processed in the form of hydrogels, such as collagen, silk, fibrin, and others such as elastin, decellularized matrix, and Matrigel (Corning), which are used as biomaterials.
Book Chapter
Pneumatic Extrusion of Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006893
EISBN: 978-1-62708-392-8
... bioprinting, electrohydrodynamic jetting (EHDJ), and laser-assisted bioprinting (LAB). Moreover, inkjet bioprinting can be subdivided into continuous inkjet and drop-on-demand inkjet printing. Laser-assisted bioprinting can be subdivided into laser guidance direct writing and laser-induced forward transfer...
Abstract
This article focuses on the pneumatic extrusion-based system for biomaterials. It provides an overview of additive manufacturing (AM) processes, followed by sections covering steps and major approaches for the 3D bioprinting process. Then, the article discusses the types, processes, advantages, limitations, and applications of AM technology and extrusion-based approaches. Next, it provides information on the research on extrusion-based printing. Finally, the article provides a comparison of the extrusion-based approach with other approaches.
Book Chapter
Additively Manufactured Dentures, Crowns, and Bridges
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006899
EISBN: 978-1-62708-392-8
... ). Because of the safety concerns and complex postprocessing steps, dental clinics and even dental laboratories do not generally have the capability to print parts using the SLS process. Thus, additional logistical costs may have to be added to the price of a denture, crown, or bridge. Inkjet Printing...
Abstract
Additive manufacturing (AM), also referred to as three-dimensional printing or rapid prototyping, is a set of technologies that has rapidly evolved and has drawn much research attention in the manufacturing of high value-added products. This article focuses on dentistry, one of the fields in which AM has gained much traction. It discusses the AM processes used to produce dentures, crowns, and bridges. Digitization techniques, which are the first step and provide the CAD model for AM processes, are presented. Scanning technologies that are widely used in dental manufacturing are presented in detail, and the strengths and weaknesses of each process within their applications are discussed. AM processes are discussed in detail, and the materials that are widely used in AM-embedded dental manufacturing are briefly surveyed. The final section concludes with remarks and a preview of future research and practice directions.
Book Chapter
History and Evolution of Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006548
EISBN: 978-1-62708-290-7
... blade in a sheet paper stack-and-cut method. By integrating with a color inkjet printing technology, it was possible to create low-cost color parts. Material Extrusion S. and L. Crump founded Stratasys in 1988, based on an invention filed by S. Crump in 1989 ( Ref 38 ). The first shipment...
Abstract
This article presents a brief history of additive manufacturing (AM). It begins by describing additive manufacturing prehistory, dating back to 1860, which is characterized by additive part creation without the use of a computer. The article then discusses the development of additive manufacturing processes occurring in the period from 1968 to 1984 and is followed by a section on modern additive manufacturing (1981 to the late 2000s). The article concludes by providing information on the growth of additive manufacturing since 2010 and the development of standards.
1