1-20 of 585 Search Results for

injection molding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003413
EISBN: 978-1-62708-195-5
... Abstract Resin transfer molding and structural reaction injection molding belong to a family, sometimes denoted as liquid composite molding. This article provides information on the characteristics and automotive and aerospace applications of liquid composite molding. It reviews techniques...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003020
EISBN: 978-1-62708-200-6
... Abstract Resin transfer molding (RTM) and structural reaction injection molding (SRIM) are two similar processes that are well suited to the manufacture of large, complex, and high-performance structures. This article discusses the similarities and differences of RTM and SRIM processes...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006021
EISBN: 978-1-62708-175-7
... Abstract This article discusses the process details of metal powder injection molding of microcomponents and the powder particle characteristics of feedstock and property requirements of binders. It reviews important characteristics to be considered in the processing steps: venting, channel...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003014
EISBN: 978-1-62708-200-6
... Abstract Injection molding is a process of forcing or injecting a fluid plastic material into a closed mold. The process generally has the advantages of being more readily automated and of permitting finer part details. Injection-molding compounds are thermoplastic or thermosetting materials...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006020
EISBN: 978-1-62708-175-7
... Abstract This article commences with a discussion on the qualitative and quantitative criteria for metal injection molding (MIM), including production quantities, shape complexity, material performance, and cost. It discusses geometric factors, such as surface finish, component size, and mass...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006055
EISBN: 978-1-62708-175-7
... Abstract Metal injection molding (MIM) is a metalworking technology that has its origins as a commercial technology only dating back to the early 1970s. This article explores why the MIM is the preferred solution for many fabricated components. It illustrates the MIM components required...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006141
EISBN: 978-1-62708-175-7
... Abstract This article describes part selection, feedstock (powders and binders) characteristics and properties, tool design, and material and tooling for fabrication of metal powder injection molding (MIM) machines. It discusses the process parameters, operation sequence, molding machines...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005503
EISBN: 978-1-62708-197-9
... Abstract This article focuses on the axisymmetric 2.5-dimensional approach used in metal powder injection molding (PIM) simulations. It describes three stages of PIM simulations: filling, packing, and cooling. The article discusses the process features of numerical simulation of PIM...
Image
Published: 15 May 2022
Fig. 31 Image of an injection mold mounted in an injection molding machine More
Image
Published: 01 November 1995
Fig. 1 The injection end of a reciprocating-screw injection molding machine. Source: Ref 2 More
Image
Published: 30 September 2015
Fig. 2 Polyurea reaction injection molding More
Image
Published: 31 October 2011
Fig. 2 Applications of ultrasonic additive manufacturing. (a) Injection molding die and part. Courtesy of Solidica Inc. (b) Plate with embedded channels. Courtesy of Edison Welding Institute. (c) X-ray of channel network in (b). Courtesy of Edison Welding Institute. (d) Embedded NiTi wire More
Image
Published: 30 September 2015
Fig. 10 Schematic of injection molding process More
Image
Published: 30 September 2015
Fig. 17 Tensile strength of different types of metal injection molding (MIM)-based iron- and steel-matrix syntactic foams. Source: Ref 15 More
Image
Published: 30 September 2015
Fig. 3 Cumulative particle size distributions for several injection molding powders show similar features in the shapes of their distributions. Also shown is the determination of the three key particle sizes ( D 10 , D 50 , and D 90 ) and their estimation from the 10, 50, and 90% points More
Image
Published: 30 September 2015
Fig. 16 Metal injection molding design with external threads. Partial threads that do not 100% encircle the part are used for ease of manufacturing; a flat portion is allowed at the mold parting line for simple tool motion. More
Image
Published: 30 September 2015
Fig. 2 Metal injection molding 17-4 PH stainless steel optical transceiver housing designed for ultrahigh-speed transceivers in networking and telecommunications equipment. The MIM part also receives electrolytic copper, electroless nickel, and electrolytic gold plating. Courtesy of MPIF More
Image
Published: 30 September 2015
Fig. 3 Metal injection molding 17-4 PH stainless steel flip slider and hinge barrel (sintered density = 7.6 g/cm 3 , or 0.274 lb/in. 3 ) that make up the dual-hinge opening mechanism in a mobile phone. The innovative design positions the clamshell phone cover to slide down and flip open More
Image
Published: 30 September 2015
Fig. 4 Metal injection molding net shape 17-4 PH stainless steel articulation gear used in a surgical stapling unit. Metal injection molding resulted in a 70% cost savings over machining the gear from bar stock. Courtesy of MPIF More
Image
Published: 30 September 2015
Fig. 5 Metal injection molding 17-4 PH stainless steel helical gear and scissor blades (sintered density = 7.5 g/cm 3 , or 0.271 lb/in. 3 ) used in pivotal laparoscopic surgical scissors. Blades are made flat and coined in pairs to provide mating blades with the correct pre-load, relief angle More