Skip Nav Destination
Close Modal
By
Kevin J. Colligan
By
J. Mazumder
By
J. Mazumder, Tim Webber, Randolph Paura
By
S.D. Brandi, S. Liu, R.D. Thomas, Jr.
By
Peter K. Sokolowski
By
W.C. Mohr, O.W. Blodgett
Search Results for
initial-gap welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 473
Search Results for initial-gap welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1993
Image
Initial-gap capacitor discharge stud welding. See text for explanation. Sou...
Available to PurchasePublished: 31 October 2011
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001361
EISBN: 978-1-62708-173-3
... Abstract Capacitor discharge (CD) stud welding is a stud arc welding process in which the tip of the stud melts almost instantly when energy stored in capacitors is discharged through it. This article describes the three basic modes of the CD stud welding: initial-gap welding, initial-contact...
Abstract
Capacitor discharge (CD) stud welding is a stud arc welding process in which the tip of the stud melts almost instantly when energy stored in capacitors is discharged through it. This article describes the three basic modes of the CD stud welding: initial-gap welding, initial-contact welding, and drawn-arc welding. It discusses the advantages and disadvantages and applications of the CD stud welding. The article describes the equipment used and the personnel responsibilities during CD stud welding.
Book Chapter
Capacitor Discharge Stud Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005554
EISBN: 978-1-62708-174-0
... Abstract This article focuses on the advantages, disadvantages, and applications of capacitor discharge (CD) stud welding as well as equipment used. It describes three modes of CD stud welding: initial-gap, initial-contact, and drawn-arc welding. The article also discusses the responsibilities...
Abstract
This article focuses on the advantages, disadvantages, and applications of capacitor discharge (CD) stud welding as well as equipment used. It describes three modes of CD stud welding: initial-gap, initial-contact, and drawn-arc welding. The article also discusses the responsibilities of the welding operator.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001821
EISBN: 978-1-62708-180-1
... stresses. Next Largest Category The next largest category of cracked members and components comprises large initial defects and cracks. In several cases, the defects in this category resulted from poor-quality welds that were produced before nondestructive test methods were well developed. However...
Abstract
This article illustrates the defects, which result because of poor-quality welds in the bridge components. The cracks resulting from the use of low fatigue strength details are also discussed. The article describes the effect of out-of-plane distortion in floor-beam-girder connection plates, multiple-girder diaphragm connection plate, and tied-arch floor beams.
Image
Macroetched cross section through a portion of the cracked connection. A ga...
Available to Purchase
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 31 Macroetched cross section through a portion of the cracked connection. A gap in the weld root can be seen. All of the cracking is contained within the disc (weld plate). The cracking initiated at both fillet weld toes and eventually grew together.
More
Image
Sequence of operations required to weld a stud to a workpiece using the ini...
Available to PurchasePublished: 30 November 2018
Fig. 22 Sequence of operations required to weld a stud to a workpiece using the initial gap method of capacitor discharge stud welding
More
Image
Sequence of operations required to weld a stud to a workpiece using the ini...
Available to Purchase
in Procedure Development and Practice Considerations for Resistance Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 25 Sequence of operations required to weld a stud to a workpiece using the initial gap method of capacitor discharge stud welding
More
Book Chapter
Development of Welding Procedures for Friction Stir Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005576
EISBN: 978-1-62708-174-0
.... The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound...
Abstract
This article discusses the development of a welding procedure for friction stir welding (FSW), including the process of defining a preliminary procedure, the optimization of parameters, the development of supporting data, and other key features to ensure a successful procedure. The critical features of FSW tool design, initial process parameters, systematic welding trials, and robustness testing are reviewed. The article provides information on the common features of welding procedure qualification. It also includes a table that lists the procedures used in the production of sound friction stir welds in various aluminum alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006490
EISBN: 978-1-62708-207-5
... that laser beam welds produced on aluminum alloys using the LSW process displayed less weld defects when compared to traditional LBW, along with concomitant benefits of increased size of the weld to accommodate gaps, enlarged interfacial weld width and improved shear strength of lap joints, enhanced ability...
Abstract
Although laser stir welding (LSW) is applied to various metallic systems, it is especially appropriate to laser beam welding (LBW) of aluminum, because liquid aluminum possesses significantly less surface tension and viscosity than most common metal alloys, which results in greater fluidity of the molten pool. This article schematically illustrates the keyhole instability in LBW and describes the process details of LSW. Representative macrographs of butt, lap, and fillet welds produced using the LBW and LSW processes are presented. The article discusses the laser welding technologies having a large impact on the ability to apply LSW in production. It concludes with information on the industrial applications of LSW.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... geometries used for arc welds in aluminum components. Courtesy of American Welding Society When welding from both sides, a temporary support of the initial weld pass can be given by an angle or rod when a thin land is employed, or the land can be thickened to provide support. In either case, back...
Book Chapter
Procedure Development and Practice Considerations for Laser-Beam Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... variables for laser welding include incident laser-beam power, incident laser-beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent variables are depth of penetration, microstructure and mechanical properties...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Book Chapter
Laser Beam Weld Design, Codes, and Quality Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... allowable gap = 0.05 × thickness Beam/seam alignment requirement approx. 0.5 × focus spot diameter Joint strength dependent on degree of penetration and weld-metal strength Bolt with backing Commonly used with aluminum-bronze alloys and others with low viscosity when molten Consumable...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Book Chapter
Electroslag and Electrogas Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005591
EISBN: 978-1-62708-174-0
... of I = BW 1/2 V 1/3 for B = 60.8 and r = 0.923. Source: Ref 14 where L is the width of the base plate, g is the root gap opening, and r is the radius of the welding electrode. Note also that this equation takes into consideration the electrode-to-joint geometry, which s related...
Abstract
Electroslag welding (ESW) involves high energy input relative to other welding processes, resulting generally in inferior mechanical properties and specifically in lower toughness of the heat-affected zone. Electrogas welding (EGW) is a method of gas metal or flux cored arc welding, wherein an external gas is supplied to shield the arc, and molding shoes are used to confine the molten weld metal for vertical-position welding. This article describes the fundamentals, temperature relations, consumables, metallurgical and chemical reactions, and process development of ESW. The problems, quality control, and process applications of ESW and EGW are also discussed.
Book Chapter
Other Fusion Welding Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... be used to join thin carbon steel sheet and carbon steel tube and pipe. The advantages of OFW include the ability to control heat input, bridge large gaps, avoid melt-through, and clearly view the weld pool. Carbon steel sheet, formed in a variety of shapes, can often be welded more economically by OFW...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006500
EISBN: 978-1-62708-207-5
... the workpieces from lifting during welding. Once the plates are secured in the welding fixture, the forces generated during the process are contained in the weld zone, because no other motion is possible. The welding tool is then mounted in the spindle of the welding machine, which was initially just an ordinary...
Abstract
This article focuses on friction stir welding (FSW), where frictional heating and displacement of the plastic material occurs by a rapidly rotating tool traversing the weld joint. Much of the research activity early on pertained to issues related to understanding the process, such as learning about material flow, heat generation, microstructure development, and many other fundamental issues. The article summarizes the results of the research, describing the aspects of how FSW actually accomplishes sound joints in metals without melting them. It discusses the FSW process variations and the practical aspects of heat generation. The article provides information on the effect of welding on material properties and typical alloys in FSW applications. The alloys include 6061 aluminum, 5083 aluminum, 2xxx aluminum, and 7xxx aluminum alloys. The article concludes with a discussion on FSW equipment.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001351
EISBN: 978-1-62708-173-3
... research results in order to explain the mechanisms involved. Bonding Practice Figure 1 shows the arrangement used in the parallel gap explosive bonding process. The explosive charge is placed in contact with the top plate, hereafter called the flyer plate. The explosive detonation is initiated...
Abstract
Explosion welding (EXW), also known as explosive bonding, is accomplished by a high-velocity oblique impact between two metals. This article describes the practice of producing an explosive bond/weld and draws on many previous research results in order to explain the mechanisms involved. It provides a schematic illustration of the arrangement used in the parallel gap explosive bonding process. The article discusses several important concepts pertaining to explosive parameters, hydrodynamic flow, jetting, and metal properties. It summarizes the criteria used to model the explosive bonding process. The article describes bond morphology in terms of wave formation, bond microstructure, and bond strength determination.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005638
EISBN: 978-1-62708-174-0
..., weld joint gap Workpiece/tooling: Material(s), material thickness, workpiece surface (roughness, oxidation, cleanliness), workpiece properties, fixturing and tooling Because laser welding is a high energy density process, the system requirements for quality and consistency are greater than...
Abstract
This article reviews weld quality monitoring considerations for two automotive materials, steel and aluminum, with a focus on photosensor technology. It provides an overview of the process description, process parameters, and weld characteristics of laser welding. The article discusses real-time or in-process monitoring, which is done with optical, acoustic, and/or charged-particle sensors. It highlights the advantages, applications, and selection criteria of weld monitoring system and concludes with examples of laser weld monitoring in the production of tailor-welded blanks.
Book Chapter
Joining Powder Metallurgy Steel Components
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006108
EISBN: 978-1-62708-175-7
.... 1 Example of poor weldment design involving gas metal arc welding of F-0000 powder metallurgy material (<6.2 g/cm 3 ) to AISI 1010 stamping. The unusually large weld bead deposit resulted in a classic toe crack because of high weld metal solidification stresses. Arrow indicates crack initiation...
Abstract
This article characterizes the physical differences between powder metallurgy (PM) and wrought or cast materials, as they apply to joining. It discusses acceptable joining procedures and techniques, including welding and brazing and solid-state methods. Information on the weldability of various PM materials is presented. The article also describes the effects of porosity on several important properties that affect the welding characteristics.
Book Chapter
General Design Considerations for Arc Welding Processes
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005558
EISBN: 978-1-62708-174-0
... increase the variability of distortion. Groove welds can be advantageous over fillet welds because they can reduce all of these parameters related to distortion. However, as earlier distortion builds up during progressive construction, it may become more difficult to control the gaps in groove welding...
Abstract
This article provides information on the various types of welds and joints. It reviews the weld joint design considerations: the ability to transfer load and the cost. The article explains the throat size and weld size requirements of fillet welds, and presents a comparison of fillet and groove welds. It details the various design considerations for groove-weld selection, including the groove angle, root opening, and depth of the groove. The article also describes the methods of edge preparation and concludes with an illustration of the recommended proportions of grooves for arc welding.
1