1-20 of 496 Search Results for

ingot-melting

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2005
Fig. 5 Longitudinal section of vacuum arc remelted (VAR) superalloy ingot melted under typical industrial conditions. Courtesy of Special Metals Corporation More
Image
Published: 09 June 2014
Fig. 6 Inductor furnace with cold crucible: ZrO 2 ingot after melting. Source: Ref 36 More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
... Abstract Discontinuously reinforced aluminum (DRA) alloy metal-matrix composites (MMCs) represent an advanced aluminum materials concept whereby ceramic particles, or whiskers, are added to aluminum-base alloys through the use of either ingot-melting or casting and/or powder-metallurgy (P/M...
Image
Published: 01 December 2008
Fig. 5 Melt rate versus vacuum arc remelting current (50 cm, or 20 in., ingot; a omposite graph from several independent sources). Source: Ref 1 More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
... Abstract Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... Abstract The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots. It is also used in the triplex production of superalloys. This article illustrates the VAR process...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005201
EISBN: 978-1-62708-187-0
.... Electroslag remelting is similar to vacuum arc remelting (VAR), except that ESR is carried out at normal atmospheric pressure and has a greater melting rate than VAR. Fig. 1 Schematic of an ESR furnace with multiple electrodes for large ingot production When the tip of the electrode is melted...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... beam melting refining drip melting cold hearth melting ELECTRON BEAM MELTING AND CASTING TECHNOLOGY is accepted worldwide for the production of niobium and tantalum ingots weighing up to 2500 kg (5500 lb) in furnaces with electron beams of 200 to 1500 kW. Other applications in Germany...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005295
EISBN: 978-1-62708-187-0
... Abstract When a heat of steel is melted and refined, it is necessary to solidify it into useful forms for further processing or final use. Ingot casting remains the preferred method for certain specialty, tool, forging, and remelted steels. This article discusses the methods, equipment...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005200
EISBN: 978-1-62708-187-0
... Abstract Vacuum induction melting (VIM) is often done as a primary melting operation followed by secondary melting (remelting) operations. This article presents the process description of VIM and illustrates potential processing routes for products, which are cast from VIM ingots or electrodes...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005510
EISBN: 978-1-62708-197-9
... and white spots, can occur. The metallurgical structure of the remelted ingot depends on the temperature gradient and the thermal history of the solidifying metal. The behavior of an inclusion that enters the melt pool is governed by its density, which controls the buoyancy force, and its size...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
..., and corona discharges. Cold plasmas are not suitable for melting processes. Thermal plasmas are suitable for melting in the production of ingots, slabs, castings, or powders. Plasma Torches Breakdown (that is, the creation of ionic charge carriers) establishes a conducting path for resistance heating...
Image
Published: 01 November 2010
replaces the enriched interdendritic liquid in the mushy zone with fluid from the melt at the nominal composition. (c) The melt superheat is extinguished, and only a weak solutal cell remains. (d) Segregation pattern in completely solidified ingot More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... melting or casting practices. Inclusions that originate in the ingot are carried on to wrought products, even though their shapes may be appreciably altered. Furthermore, additional nonmetallic matter, such as oxides, may develop during intermediate hot working stages and also end up in the finished form...
Image
Published: 01 January 1987
Fig. 4 Surface of a room-temperature tensile-test fracture in a specimen taken from an ingot prepared by adding Fe 2 O 3 to pure iron in a vacuum melt equilibrated at 1550 °C (2820 °F) in a silica crucible. The ingot contained 0.07% O in the form of FeO. The fracture surface contains dimples More
Image
Published: 09 June 2014
Fig. 3 Inductor-crucible furnace. (a) Glass pieces and powder before melting. (b) Glass ingot after melting More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
... in the sow or ingot, thus making it safer to charge. The stored thermal energy (Btus) provides further energy savings in maintaining the melt. Melt loss and themal efficiency of electric and gas reverberatory furnaces Table 1 Melt loss and themal efficiency of electric and gas reverberatory furnaces...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... based on physical vapor deposition (PVD) techniques such as electron-beam evaporation and magnetron sputtering. Liquid-phase techniques range from conventional ingot metallurgy/ingot casting (e.g., consumable and nonconsumable arc melting) to spray forming and the production of prealloyed powders from...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... performance of a part by creating a notch of unknown severity and serve as a crack-initiation site during fabrication or in service. Corrosion and wear damage can also be assisted by discontinuities, especially at the surface. These flaws may occur from the melting practices and solidification of ingot...
Image
Published: 01 December 2008
Fig. 10 Longitudinal schematic of the structure developed in an ESR ingot during melting More