1-20 of 86 Search Results for

inertia-drive friction welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 October 2011
Fig. 8 Metallographic cross section of an inertia-drive friction welding joint between vanadium and a 21-6-9 stainless steel. Note the excellent weld quality at the interface. (a) Weld interface with no σ-phase growth. (b) Weld interface with σ-phase growth (indicated by “S”) and a solid More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005596
EISBN: 978-1-62708-174-0
... Abstract This article provides information on the practice considerations for the inertia and direct-drive rotary friction welding processes. It presents the tooling and welding parameter designs of these processes. The article discusses the welding of different material family classes...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001447
EISBN: 978-1-62708-173-3
... considerations for the two most common variations: inertia welding and direct-drive friction welding. Direct-drive friction welding differs from inertia welding, primarily in how the energy is delivered to the joint. The article discusses the parameter calculations for inertia welding and direct-drive friction...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005575
EISBN: 978-1-62708-174-0
... welding and inertia-drive welding. It summarizes the similar and dissimilar metals that can be joined by FRW and discusses the metallurgical considerations that govern the properties of the resulting weld. direct-drive welding dissimilar metal joining friction heating friction welding inertia...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001349
EISBN: 978-1-62708-173-3
... Abstract Friction welding (FRW) is a solid-state welding process in which the heat for welding is produced by the relative motion of the two interfaces being joined. This article describes two principal FRW methods: direct-drive welding and inertia-drive welding. The direct-drive FRW uses...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
... Abstract Friction welding (FRW) can be divided into two major process variations: direct-drive or continuous-drive FRW and inertia-drive FRW. This article describes direct-drive FRW variables such as rotational speed, duration of rotation, and axial force and inertia-drive FRW variables...
Image
Published: 31 October 2011
Fig. 5 Schematic showing effect of welding parameters on the finished weld nugget obtained when similar metals are welded using inertia-drive friction welding equipment. (a) Flywheel energy. (b) Initial peripheral velocity of workpiece. (c) Axial pressure. Source: Ref 12 More
Image
Published: 31 October 2011
Fig. 6 Metallographic cross section of the interface of a Monel 400 to 21-6-9 stainless steel weld produced by inertia-drive friction welding. Note the fine grain size present at the interface. More
Image
Published: 31 October 2011
Fig. 4 Plot of selected parameters versus time relative to the two phases of the inertia-drive friction welding process More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005515
EISBN: 978-1-62708-197-9
... Abstract Friction welding is based on the rapid introduction of heat, causing the temperature at the interface to rise sharply and leading to local softening. This article illustrates the basic principles of direct-drive rotational friction welding and inertia friction welding. Modeling...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005578
EISBN: 978-1-62708-174-0
.... The American Welding Society categorizes two basic variations of rotary friction welding as direct-drive friction welding (also commonly referred to as continuous-drive friction welding) and inertia friction welding (also commonly referred to as stored energy friction welding). Both methods employ high...
Image
Published: 01 November 2010
Fig. 2 Process characteristics of typical (a) direct-drive rotational friction-welding and (b) inertia friction-welding processes More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005616
EISBN: 978-1-62708-174-0
... been discussed extensively by Nagy and Adler in connection with the evaluation of similar and dissimilar inertia and friction welds ( Ref 7 ). The main conclusion they drew from the results of the study was that the great variety of solid-state bonding technologies, material combinations, defect types...
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006477
EISBN: 978-1-62708-190-0
... with the evaluation of similar and dissimilar inertia and friction welds ( Ref 7 ). The main conclusion they drew from the results of the study was that the great variety of solid-state bonding technologies, material combinations, defect types, bond-quality considerations, and quantitative parameters made...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001382
EISBN: 978-1-62708-173-3
... of similar and dissimilar metal combinations to be joined. However, continuous-drive and stored-energy (inertia) friction-welding systems have not been as successfully exploited for the joining of long, hollow sections, where restrictions in the bore cannot be tolerated. The difficulties involved...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
..., there is no evidence in the finished weld because the metal is worked during the welding stage. There are two methods of joining workpieces by FRW: continuous-drive FRW and inertia-drive FRW. More recently, radial friction machines have been introduced for joining hollow sections (pipe and tube). Process...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001421
EISBN: 978-1-62708-173-3
... on the mechanical performance of the weld is not known. Friction Welding Both silicon carbide- and aluminum oxide-reinforced Al-MMCs have been friction welded using continuous-drive and inertia machines ( Ref 18 , 19 ). Friction welding is a solid-state process and does not require melting. Thus...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... welding processes), or high-energy-density beams (radiant energy or beam welding processes). For solid-phase, nonfusion welding, mechanical energy sources predominate, including the use of pressure, friction, and solid-state diffusion, although the energy of chemical reactions can also be used...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
..., as well as how their alignment may be affected by deflections or distortions that can occur as a result of mechanical loads, shock, vibrations, or thermal gradients, should be considered. The method of connecting the driving or driven member to the shaft, such as press fitting, welding, or use...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
... Abstract Casting offers a great amount of component design flexibility. This article discusses six casting design parameters that drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary...