1-20 of 132 Search Results for

inertia friction welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 31 October 2011
Fig. 2 Inertia friction welding relies on a finite amount of stored energy and axial pressure to transfer energy to the common interface. First, one workpiece is rotated while the other is held stationary. The inertial mass is accelerated to a preselected speed. The two workpieces are brought More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005596
EISBN: 978-1-62708-174-0
... Abstract This article provides information on the practice considerations for the inertia and direct-drive rotary friction welding processes. It presents the tooling and welding parameter designs of these processes. The article discusses the welding of different material family classes...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001447
EISBN: 978-1-62708-173-3
... considerations for the two most common variations: inertia welding and direct-drive friction welding. Direct-drive friction welding differs from inertia welding, primarily in how the energy is delivered to the joint. The article discusses the parameter calculations for inertia welding and direct-drive friction...
Image
Published: 01 January 1993
Fig. 9 Light micrographs of an inertia-friction weld in AA8009 alloy produced using high axial force. (a) Center. (b) Outer periphery. (c) Corresponding Knoop hardness traverse. Source: Ref 9 More
Image
Published: 01 November 2010
Fig. 3 Dissimilar steel inertia friction weld of SCMV against Aermet 100. (a) Macrograph. (b) Micrograph showing the microstructural variations across the weld revealed by using a color etch. HAZ, heat-affected zone; TMAZ, thermomechanically affected zone. Source: Ref 31 More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005515
EISBN: 978-1-62708-197-9
... Abstract Friction welding is based on the rapid introduction of heat, causing the temperature at the interface to rise sharply and leading to local softening. This article illustrates the basic principles of direct-drive rotational friction welding and inertia friction welding. Modeling...
Image
Published: 31 October 2011
Fig. 8 Metallographic cross section of an inertia-drive friction welding joint between vanadium and a 21-6-9 stainless steel. Note the excellent weld quality at the interface. (a) Weld interface with no σ-phase growth. (b) Weld interface with σ-phase growth (indicated by “S”) and a solid More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005578
EISBN: 978-1-62708-174-0
.... The American Welding Society categorizes two basic variations of rotary friction welding as direct-drive friction welding (also commonly referred to as continuous-drive friction welding) and inertia friction welding (also commonly referred to as stored energy friction welding). Both methods employ high...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001349
EISBN: 978-1-62708-173-3
... Abstract Friction welding (FRW) is a solid-state welding process in which the heat for welding is produced by the relative motion of the two interfaces being joined. This article describes two principal FRW methods: direct-drive welding and inertia-drive welding. The direct-drive FRW uses...
Image
Published: 01 November 2010
Fig. 2 Process characteristics of typical (a) direct-drive rotational friction-welding and (b) inertia friction-welding processes More
Image
Published: 01 November 2010
Fig. 1 Principle of rotational friction welding. (a) Schemati. (b) Jaws of a commercial inertia friction welding machine designed for joining aeroengine turbine disks More
Image
Published: 31 October 2011
Fig. 7 The acoustic signature and machine data from a 304 stainless steel alloy inertia friction weld. The majority of the acoustic energy occurred at the beginning and end of the weld, with a quiet portion in between. More
Image
Published: 31 October 2011
Fig. 6 The acoustic signature and machine data from a 255 dual-phase stainless steel alloy inertia friction weld. Most of the acoustic energy occurred during initial contact. The weld was relatively quiet thereafter. More
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005575
EISBN: 978-1-62708-174-0
... welding and inertia-drive welding. It summarizes the similar and dissimilar metals that can be joined by FRW and discusses the metallurgical considerations that govern the properties of the resulting weld. direct-drive welding dissimilar metal joining friction heating friction welding inertia...
Image
Published: 31 October 2011
Fig. 8 The acoustic signature and machine data from a 310 stainless steel alloy inertia friction weld. The 310 stainless steel alloy generated the most acoustic energy of the three alloys. Unlike the 304 stainless steel alloy, this material exhibited a relatively loud burst of energy More
Image
Published: 01 November 2010
Fig. 4 Variation in 0.2% proof stress across the thermomechanically affected zone (TMAZ) and heat-affected zone (HAZ) of three inertia-friction-welded nickel-base superalloys in the as-welded condition. The measurements were made on cross-weld samples using electron speckle pattern More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
..., and vacuum brazing of these alloys ( Ref 15 ). The RS-P/M aluminum-base alloys characterized by a higher residual hydrogen content (>1 mL/100 g of aluminum) will require the use of solid-state welding methods such as conventional friction welding, inertia friction welding, or linear friction welding...
Book Chapter

By W.R. Kanne, Jr.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
... friction welds, which are also solid-state welds. The amount of deformation is usually less for upset welds, and the deformation can be more precisely controlled using upset welding. For example, a pipe butt weld made using inertia friction welding will have a large upset on both the inside and outside...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001381
EISBN: 978-1-62708-173-3
... Abstract Friction welding (FRW) can be divided into two major process variations: direct-drive or continuous-drive FRW and inertia-drive FRW. This article describes direct-drive FRW variables such as rotational speed, duration of rotation, and axial force and inertia-drive FRW variables...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003209
EISBN: 978-1-62708-199-3
..., there is no evidence in the finished weld because the metal is worked during the welding stage. There are two methods of joining workpieces by FRW: continuous-drive FRW and inertia-drive FRW. More recently, radial friction machines have been introduced for joining hollow sections (pipe and tube). Process...