Skip Nav Destination
Close Modal
Search Results for
inert carriers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 237 Search Results for
inert carriers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001747
EISBN: 978-1-62708-178-8
... carrier gas. This article describes the operating principles and sample selection of inert gas fusion. It explains the mechanisms involved in the introduction of fusion gas, separation and detection of fusion gas by thermal-conductive and infrared detection methods. Additionally, the article explains...
Abstract
Inert gas fusion is a method of determining the quantitative content of gases in ferrous and nonferrous materials where gases, such as hydrogen, nitrogen, and oxygen, are physically and chemically adsorbed by the materials and later removed and swept by from the fusion area by an inert carrier gas. This article describes the operating principles and sample selection of inert gas fusion. It explains the mechanisms involved in the introduction of fusion gas, separation and detection of fusion gas by thermal-conductive and infrared detection methods. Additionally, the article explains the methods used for analyzing trace amounts of nitrogen, oxygen, and hydrogen in the carrier mediums, providing examples that aid in solving several problems.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
..., temperature and strain rate, stress, inert carriers, and fatigue, on LMIE. It provides a detailed discussion on LMIE in ferrous and nonferrous metals and their alloys. In addition, the article highlights the ways of preventing embrittlement in metals and alloys. liquid metal induced embrittlement...
Abstract
Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size, temperature and strain rate, stress, inert carriers, and fatigue, on LMIE. It provides a detailed discussion on LMIE in ferrous and nonferrous metals and their alloys. In addition, the article highlights the ways of preventing embrittlement in metals and alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001317
EISBN: 978-1-62708-170-2
... provides information on catalyst powder processing. active carriers beading catalyst catalyst powder processing catalyst preparation chemical activity chemical process extrusion honeycombing impregnation inert carriers ion exchange precipitation spray drying tableting A CATALYST...
Abstract
The chemical process being catalyzed should have a high productivity within a specified reactor volume with high reaction rates for the desired reactions and low rates for undesired reaction pathways. This article reviews the general catalyst preparation procedures, namely, impregnation, ion exchange, and precipitation. Catalyst carriers are usually high-surface-area inorganic materials with complex pore structures, into which catalytic materials such as palladium, platinum, cobalt, chromium oxide, and vanadium pentoxide are deposited using these procedures. The article also provides information on catalyst powder processing.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... conductivity detectors monitor the thermal conductivity of the carrier gas. As the evolved gases pass the detector, changes in the thermal conductivity correspond to a change in the gas (e.g., from the inert carrier gas to hydrogen) and the amount of evolved gas present. These changes correspond to the amount...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005718
EISBN: 978-1-62708-171-9
... feeder using a carrier gas. Fig. 5 Powder flame spray system In flame spray processes, the oxyfuel ratio and total gas flow are adjusted to produce the desired thermal output. Optional air jets, downstream of the combustion zone, may further adjust the thermal and velocity profile...
Abstract
This article presents the major thermal spray processes and their subsets, presenting each of the commercially significant processes together with some of their important variations. Each process is presented along with the attributes that influence coating structure and performance. The article summarizes the essential equipment components and necessary controls. The various thermal spray processes are conventional flame spray, detonation gun, high-velocity oxyfuel spray, electric arc spray, and plasma arc spray. Other processes, such as cold spray, underwater plasma arc spray, and extended-arc and other high-energy plasma arc spray, are also considered.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... surface by a chemical reaction from the vapor or gas phase. In general, three processing steps are involved in any CVD reaction: (1) the production of a volatile carrier compound, (2) the transport of the gas to the deposition site without decomposition, and (3) the chemical reaction necessary to produce...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006659
EISBN: 978-1-62708-213-6
... of the carrier gas (mobile phase) is to carry the sample from the inlet, through the tubing, column, and, ultimately, to the detector. The carrier gas must be inert, meaning that it should not interact and/or react with the sample (analytes or solvent) that is being injected onto the column. The carrier gas also...
Abstract
This article is dedicated to gas chromatography (GC), covering the chromatographic method and primary components of a modern GC apparatus. The components include the carrier gas cylinder, flow controller and pressure regulator, sample inlet and injection port, column oven, and detector. Common GC detectors are the thermal conductivity cell detector, flame ionization detector, electron capture detector, sulfur chemiluminescence detector, and nitrogen-phosphorus detector.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005199
EISBN: 978-1-62708-187-0
... inclusions. Use of low pressures also eliminates nitrogen pickup by steel. The volatility of certain alloying elements such as chromium, aluminum, and manganese can result in high losses that can be minimized by replacing the vacuum with an inert gas atmosphere over the melt during additions. Vacuum...
Abstract
This article discusses the most common methods of melting steels, namely, electric arc and induction melting. It describes the classification of refractories by an index of the “basicity” of the slag formed on the steel surface. The article provides a discussion on the converter metallurgy, which includes melt refinement in argon oxygen decarburization (AOD) vessels and vacuum oxygen decarburization (VODC) in a converter vessel. It also discusses ladle metallurgy, which includes vacuum induction degassing, vacuum oxygen decarburization, and vacuum ladle degassing.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003610
EISBN: 978-1-62708-182-5
... products. It must be remembered that these reagents react very slowly, if at all, with oxides of the alkali metals. Another successful method in use is reaction with water vapor/inert gas (argon or nitrogen) mixtures, or water spray in an inert carrier gas, followed by water rinsing. Evaporation has also...
Abstract
This article provides information on the liquid lithium systems that are exposed to liquid metal. It discusses the forms in which liquid-metal corrosion is manifested. The influence of several key factors on the corrosion of metals and alloys by liquid-metal systems or liquid-vapor metal coolants is described. Some information on safety precautions for handling liquid metals, operating circulating systems, dealing with fire and spillage, and cleaning contaminated components, are also provided.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006048
EISBN: 978-1-62708-172-6
... effective anticorrosion material, but it is unlike other products used to protect pipes and fittings. For example, wax is not rock-hard yet it has excellent service life. That is partly because it is chemically inert. Wax can also take many forms; it can be wrapped, poured, dipped, sprayed, brushed, spread...
Abstract
This article describes the features, benefits and limitations of petrolatum and microcrystalline wax. It provides a detailed discussion on the steps to be followed before applying the various forms of the wax-based coatings. The wax-based coating forms include petrolatum and microcrystalline tapes, marine petrolatum-based pile systems; cold-applied petrolatum-based paste coating systems; hot-applied microcrystalline wax flood coating systems; wax-based dips, brushons, and sprays; and wax-impregnated fabrics and wax-coated papers. The article also discusses the applications and limitations of these wax-based coatings. It concludes by highlighting the steps involved in the installation of wax-based casing fillers.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
...-rich coating, and many of the same principles of aluminizing packs apply to chromizing packs. Parts are packed in chromium powder with an inert filler such as aluminum oxide. A halide salt activator is added that changes to the vapor phase at the processing temperature and serves as a carrier gas...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
... reactions between the metal and the specially composed slag. Today closed ESR furnaces are used, which can be evacuated and afterward have an inert gas atmosphere introduced. Today various numbers of special metals are melted and cast using vacuum metallurgy technologies; examples are superalloys...
Book Chapter
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005983
EISBN: 978-1-62708-166-5
... on individual applicatons. (c) Rich gas atmosphere. (d) (+40°F) (4.4°C) Dewpoint gas atmosphere. (e) Lean gas atmosphere. (f) Medium rich gas atmosphere. (g) Exothermic gas atmosphere may be used as a carrier. Source: Ref 1 Molecular nitrogen, as the major component of air...
Abstract
This article describes the effects of furnace atmospheric elements on steels. These elements are air, water vapor, molecular nitrogen, carbon dioxide, and carbon monoxide. The article provides useful information on six groups of commercially important prepared atmospheres classified by the American Gas Association on the basis of method of preparation or on the original constituents employed. These groups are designated and defined as follows: Class 100, exothermic base; Class 200, prepared nitrogen base; Class 300, endothermic base; Class 400, charcoal base; Class 500, exothermic-endothermic base; and Class 600, ammonia base. These are subclassified and numerically designated to indicate variations in the method by which they are prepared. The article also contains a table that lists significant furnace atmospheres and their typical applications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001401
EISBN: 978-1-62708-173-3
... soldering; larger packages (e.g., leaded or leadless chip carriers) may be damaged by exposure to the harsh environments (flux and molten solder) as well as be more prone to solder defects ( Ref 1 ). The wave soldering technique encompasses a sequence of processes, all of which are typically contained...
Abstract
This article focuses on the design considerations and process parameters critical to the successful implantation of wave soldering on printed circuit boards. The design considerations include the through-hole technology and the surface-mount technology. The article presents information on process parameters, which can be divided into three groups: the fluxing operation, solder wave properties, and process schedule. It provides information on various solder defects.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
.... Because of the inert gases used during plasma spraying, oxidation of the substrate is minimized. In addition to spraying, any of the oxides may be applied by troweling. Troweled coatings usually are thicker than sprayed coatings and are designed to provide maximum thermal protection to the underlying...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005622
EISBN: 978-1-62708-174-0
... Abstract Penetration-enhanced gas tungsten arc welding (GTAW) processes have been referred to variously as flux tungsten inert gas (TIG), A-TIG, and GTAW with a penetration-enhancing compound. This article provides a discussion on the principles of operation, advantages, disadvantages...
Abstract
Penetration-enhanced gas tungsten arc welding (GTAW) processes have been referred to variously as flux tungsten inert gas (TIG), A-TIG, and GTAW with a penetration-enhancing compound. This article provides a discussion on the principles of operation, advantages, disadvantages, procedures, and applications of GTAW. It also includes information on the equipment used and health and safety issues associated with GTAW.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... 1 2 % of the total gas flow) is sufficient to create heating temperatures. Without a consumable electrode, plasma arc can generate higher temperatures than the electric arc methods. Products of combustion are eliminated or reduced. In addition, high inert gas pressure (5 kPa, or 50 mbar...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005300
EISBN: 978-1-62708-187-0
.... While chlorine has often been added to an inert gas in historical practice, today (2008), virtually all flux injection uses just an inert gas as the flux carrier. The purpose of flux injection is threefold in most foundry applications: hydrogen removal, a partial removal of inclusions by flotation...
Abstract
Aluminum fluxing is a step in obtaining clean molten metal by preventing excessive oxide formation, removing nonmetallic inclusions from the melt, and preventing and/or removing oxide buildup on furnace walls. This article discusses the solid fluxes and gas fluxes used in foundries. It reviews the classification of solid fluxes depending on their use and function at the foundry operation. These include cover fluxes, drossing fluxes, cleaning fluxes, and furnace wall cleaner fluxes. The article also examines the operational practices and applications of the flux injection in the foundries. It describes the applications of the aluminum fluxing such as crucible furnaces, transfer ladles, reverberatory furnaces, and holding/casting furnaces.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005799
EISBN: 978-1-62708-165-8
... to sustain a carburizing atmosphere that proceeds in the forward direction. ( Ref 3 ). Gas carburizing atmospheres are often generated by enriching an endothermic carrier gas with methane. The carburizing potential of endothermic gas without hydrocarbon enrichment is not sufficient to produce significant...
Abstract
This article describes the thermodynamics and kinetics of gas carburizing reactions, and details the mass transfer mechanism during gas carburizing. It discusses the various considerations involved in carburizing process planning, and reviews successful operation of the gas carburizing process based on the control of three principal variables: temperature, atmosphere composition or carbon potential, and time. The article also describes the selection criteria for alloy, carbon sources, atmosphere types, and carbon monoxide level for endothermic carburizing atmospheres. It provides information on carburizing modeling, case depth prediction, case depth measurement, and case depth evaluation as well as on carburizing equipment, and also covers the factors affecting distortion after carburizing.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... and coated as in other thermal spray processes and then fused. There are two variants: Spray and fuse, and spray-fuse. In spray and fuse, the fusion is done after deposition using one of several techniques, such as flame or torch, induction, or vacuum, inert, or hydrogen furnaces. In spray-fuse...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
1