Skip Nav Destination
Close Modal
By
Egbert Baake, Bernard Nacke
By
Andris Jakovics, Sergejs Pavlovs
By
Erwin Dötsch
By
Robert Goldstein
By
Erwin Dötsch
By
Andris Jakovics, Sergejs Pavlous
By
David White, Martin Reeves, Paul Campbell, David Neff
By
Jerzy Barglik, Dagmara Dołęga
By
David U. Furrer
Search Results for
inductor crucible cold furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 31
Search Results for inductor crucible cold furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Introduction and Fundamental Principles of Induction Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... installations. channel induction furnaces crucible furnaces induction melting induction skull melting inductor crucible cold furnaces power supplies INDUCTION MELTING has been applied successfully in the ferrous and nonferrous industry for many decades. However, induction melting also is used...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Image
Published: 09 June 2014
Image
Elements of construction of inductor furnace with cold crucible (IFCC). Sou...
Available to PurchasePublished: 09 June 2014
Book Chapter
Melting of Glasses and Oxides
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
... crucible furnaces inductor crucible cold furnaces melt properties oxides THIS ARTICLE IS A BRIEF OVERVIEW of models of the following induction heating devices for melting with skull formation of low-conductivity materials: Induction crucible furnace, or ICF ( Fig. 1 ) Induction furnace...
Abstract
This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull formation of low-conductivity materials such as glasses and oxides. The article presents the governing equations and boundary conditions for ICF and IFCC modeling. It includes a discussion on three electromagnetic field models in IFCC, namely, two-dimensional (2-D), quasi-three-dimensional, and three-dimensional (3-D) models. The article provides information on the simulation of skull formation in IFCC, and elucidates the transient axisymmetrical 2-D model and the transient 3-D model, including the primary results achieved for both glasses and skull formation.
Book Chapter
Operation of Induction Furnaces in Iron Foundries
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005904
EISBN: 978-1-62708-167-2
... is a dedicated program for sintering a newly lined crucible; the processor controls the sintering process after a new refractory has been installed by means of a time-dependent temperature profile ( Fig. 8a ). Fig. 8 Program for channel furnace processor monitor control of (a) sintering and (b) cold...
Abstract
The crucible induction furnace is growing as an alternative melting unit to the cupola furnace due to its low specific power and reduced power consumption during solid melting material. This article details the process engineering features of the crucible induction furnace. It discusses the various processes involved in melting, holding, and pouring of liquid melt in crucible induction furnaces wherein the holding operation is carried out in channel furnace and pouring operation in pressure-actuated pouring furnaces. The article examines the behavior of furnace refractory lining to defects such as erosion, infiltration, crack formation, and clogging, and the corresponding preventive measures to avoid the occurrence of these defects. It elucidates the overall furnace operations, including commissioning, operational procedures, automatic process monitoring, inductor change, and dealing with disturbances.
Book Chapter
Magnetic Flux Controllers in Induction Heating and Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
.... The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning. channel type furnaces continuous induction tube welding cooling crucible furnaces induction coils induction melting inductor crucible cold furnaces magnetic flux...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Book Chapter
Operation of Induction Furnaces for Steel and Non-iron Materials
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
... furnace is kept hot with 70 kW during stoppages. Inductive Melting in Semifinished Product Shops The topics covered in this section are a channel furnace with high-performance inductors, and the application of crucible furnaces. Channel Furnace with High-Performance Inductors Table 1...
Abstract
Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting and pouring operations in small-and medium-sized steel foundries, including aluminum, copper, and zinc industries. It also provides information on the process engineering benefits of melting and pouring operations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005196
EISBN: 978-1-62708-187-0
... and water cooling systems for induction furnaces. Furnace operators can increase the power supply utilization by the use of mechanical skimmers. The article describes the various lining materials used in induction furnaces, namely, silica, alumina, and magnesia. The crucible wall scrapers, ramming mixes...
Abstract
This article describes the principles and classifications of induction furnaces. The classifications of induction furnaces are coreless and channel. The electromagnetic stirring action in these furnaces is reviewed. The article provides information on the various power supplies and water cooling systems for induction furnaces. Furnace operators can increase the power supply utilization by the use of mechanical skimmers. The article describes the various lining materials used in induction furnaces, namely, silica, alumina, and magnesia. The crucible wall scrapers, ramming mixes, and lining push-out device used in induction furnaces are also reviewed. The article concludes with a discussion on batch operation and tap-and-charge operation, two distinct ways of operating a coreless induction furnace.
Book Chapter
Cast Iron Melting Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
..., furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed...
Abstract
The melting process often includes refining and treating the metal. The choice of which type of melting to use depends on a number of factors: type of alloy being melted, the local cost of electric power, and local environmental regulations. This article discusses the principles, furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed in the article.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001747
EISBN: 978-1-62708-178-8
... crucible, heating the crucible to 3000 °C (5430 °F). Inert gas fusion by induction heating uses the pure graphite crucible as an inductor centered in the load or work coil portion of a high-frequency induction furnace. When the furnace is activated, the crucible inductively couples with the high...
Abstract
Inert gas fusion is a method of determining the quantitative content of gases in ferrous and nonferrous materials where gases, such as hydrogen, nitrogen, and oxygen, are physically and chemically adsorbed by the materials and later removed and swept by from the fusion area by an inert carrier gas. This article describes the operating principles and sample selection of inert gas fusion. It explains the mechanisms involved in the introduction of fusion gas, separation and detection of fusion gas by thermal-conductive and infrared detection methods. Additionally, the article explains the methods used for analyzing trace amounts of nitrogen, oxygen, and hydrogen in the carrier mediums, providing examples that aid in solving several problems.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005288
EISBN: 978-1-62708-187-0
..., maintaining the required casting temperature. Water-cooled graphite dies are attached to the holding furnace or crucible. During the continuous casting operation, metal flows into the graphite casting die, where it solidifies. The solidified strands are intermittently withdrawn in a pull-pause sequence...
Abstract
This article reviews the history and methods of copper alloy continuous casting. These methods include vertical continuous casting and horizontal continuous casting. The article discusses the upcasting methods used in vertical continuous casting and strip casting used in horizontal continuous casting. The article also describes the methods and processes of wheel casting and the Ohno continuous casting method.
Book Chapter
Abbreviations and Symbols: Casting
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005348
EISBN: 978-1-62708-187-0
... natural log base, 2.71828; electron HVC hydrovac process C concentration E modulus of elasticity Hz hertz C liquid composition Ec elastic modulus of composite I inductor current C0 initial concentration Ef elastic modulus of ber IACS International Annealed Copper Cs solid composition Em elastic modulus...
Book Chapter
Computational Modeling of Induction Melting and Experimental Verification
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... radiation heat exchange in electro-technological devices such as: Between melt and slag in an induction crucible furnace (ICF) and in ladle and cover, or environment Between melt and metal crucible of an induction furnace with cold crucible (IFCC) Between workpiece and shield of induction...
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Book Chapter
Reverberatory and Stack Furnaces
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005350
EISBN: 978-1-62708-187-0
... furnace include: These furnaces have a higher hold-to-metal ratio and therefore are larger (higher capital cost). With a typical hold-to-melt ratio of 8 to 1, a minimum of eight times the solid charge weight must be maintained to help dilute the cold metal charge and not cause excessive bath...
Abstract
This article illustrates the basic components of dry and wet hearth reverberatory furnaces. It discusses stack melters that are used for aluminum metal casting, as they are efficient in sealing the furnace and using the flue gases to preheat the charge materials. The article describes the various factors for improving and maintaining furnace efficiencies. It explains the benefits of circulating molten metal in reverberatory furnaces and circulation methods.
Book Chapter
Production of Gray Iron Castings
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006329
EISBN: 978-1-62708-179-5
... with off-grade iron Sulfur adsorption None 0.12–0.15% Emissions Dust 0.5 kg/ton 8–12 kg/ton Slag 10–20 kg/ton 40–1000 kg/ton Harmful exhaust gas components None (with clean scrap) SO 2 , No x , CO Crucible furnaces often are used in a duplex mode, where the liquid iron...
Abstract
Foundry practices critical to the production of cast irons include melting, alloying, molten metal treatment, pouring, and the design of feeding systems (gating and risering) to allow proper filling of the casting mold. This article reviews these production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the castability factors, such as fluidity, shrinkage, and resistance, of gray iron. Typical cupola charge compositions and the final analyses for class 30 and class 40 gray iron castings are presented in a table. The article describes the induction melting and arc furnace melting used in gray iron foundries. It also reviews the inoculation methods such as stream inoculation and mold inoculation, of gray iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006302
EISBN: 978-1-62708-179-5
... filled with a salt bath having the composition 75% NaOH, 5% NaC1, 5% NaF, 14% Na 2 CO 3 , and 1% K 2 CO 3 . The bath is operated at 460 to 490 °C (860 to 910 °F) by controlling the heating current supplied to the crucible furnace. Direct current is applied between the crucible and the assembly...
Abstract
Brazing and soldering are done at temperatures below the solidus temperature of the base material but high enough to melt the filler metal and allow the liquid filler metal to wet the surface and spread into the joint gap by capillary action. This article discusses the common advantages of both brazing and soldering. It describes the brazing and soldering of cast irons, as well as the selection of brazing filler material. The article discusses various brazing methods: torch brazing, induction brazing, salt-bath brazing, and furnace brazing. It concludes with information on the application examples of brazing of cast iron.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006484
EISBN: 978-1-62708-207-5
... top ( Fig. 8 ) allows the furnace to be charged with fewer bucket loads of scrap ( Ref 16 ). This can reduce charging times by up to 80%, which keeps the furnace refractories from getting cold. The reduced number of charging steps also improves safety by reducing worker exposure to the furnace...
Abstract
Aluminum possesses many characteristics that make it highly compatible with recycling. Production of aluminum from scrap has a number of advantages. This article discusses the technology for the recovery, sorting, and remelting of aluminum. It describes the collection and acquisition of aluminum scrap in transportation, packaging, electrical and electronic, and building and construction sectors. The article reviews the technologies used to accomplish comminution for aluminum: shearing, knife shredding, and swing-hammer shredding. It provides a description of the devices used in scrap sorting, such as hand sorting, air classification, magnetic separation, eddy-current separation, heavy-media separation, and sensor-based sorting. The article also describes thermal processing, refining and casting, and dross processing of aluminum. It provides information on reverberatory and electric furnaces used for melting aluminum.
Book Chapter
Electromagnetic Problem Solutions
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005877
EISBN: 978-1-62708-167-2
... is a good solution for solving some complicated problems such as induction melting of metals in a cold crucible furnace or induction heating in medical applications ( Ref 8 ). However, the great majority of engineering simulations in the induction heating and heat treating industry are conducted using a 2-D...
Abstract
Electromagnetic problem solutions are based on the macroscopic theory of the continuous model for the electromagnetic field (EMF). It is described by a system of integral or partial differential equations for five vector quantities, namely, electric field strength, electric flux density, current density, magnetic field strength, and magnetic flux density. This article describes the behavior of the EMF by Maxwell's equations in integral or differential forms. It discusses the definition of potentials; methods of mathematical modeling; boundary conditions; and energy, power density, and electromagnetic forces.
Book Chapter
Temperature Requirements for Heating Super Alloys and Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005886
EISBN: 978-1-62708-167-2
... brushed. These materials are also applied to a wide range of industrial applications for chemical containers and transfer systems such as tanks and tubing, materials processing tooling such as rollers and cutting systems, and for elevated-temperature applications such as furnaces and energy generation...
Abstract
This article discusses special considerations relative to induction heating of stainless steels and nickel-base superalloys. It focuses on the various industrial and high-temperature applications of induction heating to stainless steel and superalloy components, namely, primary melting processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels.
1