Skip Nav Destination
Close Modal
Search Results for
induction skull melting furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42 Search Results for
induction skull melting furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... Abstract Skull melting refers to the use of furnaces with water-cooled crucibles that freeze a solid “skull” of material on the crucible wall. This article describes the basic components, operating pressure, advantages, and applications of vacuum arc and induction skull melting furnaces...
Image
Published: 09 June 2014
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
... Abstract This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull...
Abstract
This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull formation of low-conductivity materials such as glasses and oxides. The article presents the governing equations and boundary conditions for ICF and IFCC modeling. It includes a discussion on three electromagnetic field models in IFCC, namely, two-dimensional (2-D), quasi-three-dimensional, and three-dimensional (3-D) models. The article provides information on the simulation of skull formation in IFCC, and elucidates the transient axisymmetrical 2-D model and the transient 3-D model, including the primary results achieved for both glasses and skull formation.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005911
EISBN: 978-1-62708-167-2
.... Once the glass starts to become molten the conducting rod is withdrawn and the glass is directly heated by the induction coil. The exterior glass in contact with the interior furnace walls is cooled and forms a solid layer or skull. This process eliminates using melting containers that could...
Abstract
The historical use of induction heating relating to glass melting gives some insight into its use in today's glass manufacturing industry. A patent search on induction heating provides historical information about how induction heating was used in the glass melting industry, from both a direct fired or a susceptor/container approach. This article provides review of historical patents, following an introduction to conductivity in glass and electrical heating. The purpose is to show that induction heating has been and is being used in the glass melting industry.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
.... Melting Processes Zirconium casting uses two melting methods: vacuum arc skull melting and induction melting (either vacuum or skull). Both methods are commonly used for melting reactive alloys. Vacuum arc Skull Melting Vacuum arc skull melting furnaces use consumable electrodes melting...
Abstract
This article describes typical foundry practices used to commercially produce zirconium castings. The foundry practices are divided into two sections, namely, melting and casting. The article discusses various melting processes, such as vacuum arc skull melting, induction skull melting, and vacuum induction melting. Various casting processes, such as rammed graphite casting, static and centrifugal casting, and investment casting are reviewed. The article also provides information on the mechanical and chemical properties of zirconium castings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
..., furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed...
Abstract
The melting process often includes refining and treating the metal. The choice of which type of melting to use depends on a number of factors: type of alloy being melted, the local cost of electric power, and local environmental regulations. This article discusses the principles, furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed in the article.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005848
EISBN: 978-1-62708-167-2
... vacuum chambers—such as induction vacuum furnaces with chambers capable of holding multiple parts for higher production volumes ( Fig. 8 ), induction vacuum melting furnaces ( Fig. 9 ), or induction skull melting furnaces—have induction coils inside the vacuum chamber. Special consideration needs...
Abstract
Controlled atmosphere chambers are used to control the surface chemistry of the metals that are being processed. This article focuses on the various types of controlled atmospheres used in induction heat treating and brazing, namely, inert gas atmospheres based on argon and helium; prepared and commercial nitrogen-base atmospheres; and brazing atmospheres. It provides detailed information on two types of controlled atmosphere chambers: atmosphere and vacuum. The article also describes the selection factors, advantages, and disadvantages of these chambers.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
.... The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning. channel type furnaces continuous induction tube welding cooling crucible furnaces induction coils induction melting inductor crucible cold furnaces magnetic flux...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... for electron beam and vacuum arc remelting skull melting and casting Cold hearth melting process for the feedstock refining of superalloys for vaccum induction melting and electron beam casting Fig. 2 Examples of electron beam melting and casting processes. (a) Button melting with controlled...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace. computational fluid dynamics discretization finite volume method fluid viscosity induction crucible furnaces induction melting...
Abstract
This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in the transport equation and computational schemes for the fluid dynamics equation. The aspects of computational algorithms for specific magnetohydrodynamic problems with mutual influence of the magnetic field and melt flow due to the changing shape of the free surface are also considered. The article illustrates the application of the basic equations and approaches formulated for electromagnetic field and melt turbulent flow for the numerical study of an induction crucible furnace.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
... be seen on some aluminum melts in induction furnaces. While it may not be visible, the intense stirring is normally viewed as a factor in breaking these oxides into smaller and smaller inclusions, which may then be suspended in the melts. The need to remove these with downstream cleaning will somewhat...
Abstract
Dross, which is the oxide-rich surface that forms on melts due to exposure to air, is a term that is usually applied to nonferrous melts, specifically the lighter alloys such as aluminum or magnesium. This article describes dross formation and ways to reduce it, the economic implications of dross, and in-plant enhancement or recovery of dross. It discusses the influence of the melter type on dross generation and the influence of charge materials and operating practices on melt loss. Fluxing is a word applied in a broad sense to a number of melt-treating methods. The article also discusses the in-furnace treatment with chemical fluxes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
...-gravity low-pressure casting, and pressure die casting. Melting and Metal Treatment Aluminum and aluminum alloys can be melted in a variety of ways. In routine use are coreless and channel induction furnaces, crucible and open-hearth reverberatory furnaces (fired by natural gas or fuel oil...
Abstract
Aluminum alloys are primarily used for nonferrous castings because of their light weight and corrosion resistance. This article discusses at length the melting and metal treatment, structure control, sand casting, permanent mold casting, and die casting of aluminum alloys. It also covers the types and melting and casting practices of copper alloys, zinc alloys, magnesium alloys, titanium alloys, and superalloys, and provides a brief account on the casting technique of metal-matrix composites.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... and induction furnaces. The arc furnace is the primary melting method and is used by over 80% of steel foundries ( Ref 1 ). However, arc furnaces are not good holders or efficient at superheating metal, so it is not uncommon to use induction furnaces to superheat steel after the arc melters. Induction furnaces...
Abstract
This article focuses on the construction, operation of electric arc furnaces (EAF), and their auxiliary equipment in the steel foundry industry. It provides information on the power supply of EAF and discusses the components of the EAF, including the roof, furnace shell, spout and tap hole, water-cooling system, preheat and furnace scrap burners, and ladles. The article describes the acid and basic steelmaking practices. It discusses the raw materials used, oxidation process, methods of heat reduction, and deoxidation process in the practices. The article provides a discussion on the arc melting of iron and EAF steelmaking.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001345
EISBN: 978-1-62708-173-3
..., temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam...
Abstract
This article describes the physical principles of brazing with illustrations and details elements of the brazing process. The elements of brazing process include filler-metal flow, base-metal characteristics, filler-metal characteristics, surface preparation, joint design and clearance, temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam and laser brazing, microwave brazing, and braze welding.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007021
EISBN: 978-1-62708-439-0
... of furnace melting mechanisms include: Induction melting Plasma arc cold hearth Water-cooled copper induction skull melting Contactless electrode induction melting Vacuum induction melt inert gas atomization (VIGA, Fig. 3a ) can produce the highest- quality or cleanest melt...
Abstract
This article provides an overview of the supply chain for metallic additively manufactured materials, with an emphasis on spherical alloy powders. The article describes powder production processes as well as the various metal alloys that can be produced using powder AM techniques. It also reviews the basic characteristics of powder feedstocks and the management of metallic powders.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... ). These include metalworking dies, heat shields, furnace fixtures, heating elements, and a variety of automotive components. The primary synthesis techniques for Fe 3 Al alloys have been based on melting. The materials have been prepared by air induction melting, vacuum induction melting (VIM), argon...
Abstract
This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.
1