1-20 of 36 Search Results for

induction skull melting

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction...
Book Chapter

By G. Keough
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... Abstract Skull melting refers to the use of furnaces with water-cooled crucibles that freeze a solid “skull” of material on the crucible wall. This article describes the basic components, operating pressure, advantages, and applications of vacuum arc and induction skull melting furnaces...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
... Abstract This article describes typical foundry practices used to commercially produce zirconium castings. The foundry practices are divided into two sections, namely, melting and casting. The article discusses various melting processes, such as vacuum arc skull melting, induction skull melting...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
... Abstract This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005911
EISBN: 978-1-62708-167-2
... (skull) of the vessel, to avoid contamination of the melt and corrosion of the vessel. The glass layer when cooled is less susceptive to the induced currents compared to the molten glass, which is still significantly susceptible. Again, by inductively heating the glass to raise the temperature, energy...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005898
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the basic turbulent flow, and the thermal, mass-transfer, and hydrodynamic phenomena for use in modeling physical processes during induction melting. It provides a discussion on transport phenomena equations that includes the approximation of convective terms in...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
... segmented copper ring is placed between the induction coil and the melt. Magnetic flux flows through the slots of the cold crucible and heats the melt. Water-cooled Faraday rings are often used on the bottom of the furnace. A metal skull typically forms between the melt and the copper components, which...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003173
EISBN: 978-1-62708-199-3
..., furnace types, charging practices of metal melting methods, namely induction melting, cupola melting, arc melting, crucible melting, reaction melting, and vacuum melting, and the refractories and charging practice of reverberatory furnaces. Molten metal treatment of steels and aluminum also is discussed...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
..., and atomizing of reactive metals, titanium, and superalloys. Plasma torches, however, are the only nonconsumable heat sources for melting under high inert gas pressures in skull crucibles. High pressure is an essential requirement for preventing the selective evaporation of alloying elements that are...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... (for example, for refractory metals), vacuum arc melting and remelting (for reactive metals and superalloys), and electroslag melting and vacuum induction melting (for superalloys, specialty steels, and nonferrous metals). Some advantages and limitations of the competing vacuum processes are given in...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005195
EISBN: 978-1-62708-187-0
... induction furnaces. The arc furnace is the primary melting method and is used by over 80% of steel foundries ( Ref 1 ). However, arc furnaces are not good holders or efficient at superheating metal, so it is not uncommon to use induction furnaces to superheat steel after the arc melters. Induction furnaces...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005285
EISBN: 978-1-62708-187-0
... seen on some aluminum melts in induction furnaces. While it may not be visible, the intense stirring is normally viewed as a factor in breaking these oxides into smaller and smaller inclusions, which may then be suspended in the melts. The need to remove these with downstream cleaning will somewhat...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003175
EISBN: 978-1-62708-199-3
... (skull melting) or a vacuum induction melting technique in which a magnetic field is arranged to partially levitate the melt and keep it from touching the sides of the metal crucible. Large heavy-section titanium castings can be made in rammed graphite molds. These molds are made using finely divided...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005848
EISBN: 978-1-62708-167-2
... holding multiple parts for higher production volumes ( Fig. 8 ), induction vacuum melting furnaces ( Fig. 9 ), or induction skull melting furnaces—have induction coils inside the vacuum chamber. Special consideration needs to be given to coil voltage and how all power components inside the chamber are...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001345
EISBN: 978-1-62708-173-3
..., temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam and...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... composites have been studied as well, for example, Nb-19Ti-4Hf-13Cr-2Al-4B-16Si ( Ref 31 ). By and large, these materials have been synthesized using techniques such as induction skull melting (ISM) ( Ref 31 ) and cold-crucible directional solidification ( Ref 32 ). Subsequent processing has included hot...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005337
EISBN: 978-1-62708-187-0
... required to maintain metal integrity. The melting of small quantities of titanium was first experimented with in 1948 using methods such as resistance heating, induction heating, and tungsten arc melting ( Ref 12 , 13 ). However, these methods never developed into industrial processes. The development...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... enhance combined properties. Gamma alloys are processed by conventional methods, including casting, ingot metallurgy, and P/M. Important alloying/melting processes include induction skull melting, vacuum arc melting, and plasma melting. Other methods under study include mechanical alloying, spray...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001082
EISBN: 978-1-62708-162-7
... manufactured by the investment casting process The melting of small quantities of titanium was first experimented with in 1948 using methods such as resistance heating, induction heating, and tungsten arc melting ( Ref 12 , 13 ). However, these methods never developed into industrial processes. The...