1-20 of 534 Search Results for

induction hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005867
EISBN: 978-1-62708-167-2
... Abstract Induction hardening is a prominent method in the gear manufacturing industry due to its ability of selectively hardening portions of a gear such as the flanks, roots, and/or tips of teeth with desired hardness, wearing resistance, and contact fatigue strength without affecting the...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005865
EISBN: 978-1-62708-167-2
... Heel 5.7 6.0 5.8 5.2 6.1 5.2 5.4 6.2 5.9 5.9 6.1 5.5 Fig. 16 Example of typical sequence of hardening of V-6 crankshafts Fig. 22 A dual-spindle vertical system typical for high-production induction hardening of automotive camshafts. Courtesy of Inductoheat Inc...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005868
EISBN: 978-1-62708-167-2
... Fig. 1 Typical undercarriage components that are induction hardened Fig. 3 Induction heating coil for hardening of undercarriage rollers. Source: Ref 1 Fig. 4 Immersion quench system for undercarriage rollers. Source: Ref 1 Fig. 5 Vertical system used for...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005869
EISBN: 978-1-62708-167-2
... Abstract Induction hardening of geared parts used in aeronautic and aerospace industry is an important technology because of its one-piece flow, repeatability, energy efficiency, and tighter control of surface distortion than conventional carburizing. This article describes the requirements and...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005859
EISBN: 978-1-62708-167-2
... Abstract This article focuses on induction hardening process for heat treating operations specifically designed to result in proper microstructure/property combinations in either localized or in the final parts. It briefly reviews the heat treating basics for conventional heat treating...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005863
EISBN: 978-1-62708-167-2
... Abstract Induction hardening of steel components is the most common application of induction heat treatment of steel. This article provides a detailed account of electromagnetic and thermal aspects of metallurgy of induction hardening of steels. It describes induction hardening techniques...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005864
EISBN: 978-1-62708-167-2
... Abstract This article describes the common types of automotive and truck axle shafts. It provides information on steels used for induction-hardened shafts, and on the manufacturing and induction hardening methods of axle shafts. The article discusses the effects of case depth, shaft length, and...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... Abstract Residual stresses are stresses within a part that result from non-uniform plastic deformation or heating and cooling and play a vital role in ensuring long life of the induction-hardened steel parts. This article provides a description of the formation of residual stresses, and factors...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005871
EISBN: 978-1-62708-167-2
... Abstract Induction hardening involves multiple processing steps of heating and quenching which presents opportunity for errors and defects. This article discusses the common problems associated with induction hardening of shafts as well as the methods to diagnose, inspect, and prevent them. In...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005761
EISBN: 978-1-62708-165-8
... a workpiece is explained, with emphasis on the skin effect. The article discusses typical procedures for induction hardening of steel, namely, austenitizing and quenching to form martensite either on the surface (case hardening) or through the entire section (through hardening). It briefly describes...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005873
EISBN: 978-1-62708-167-2
... Abstract Tempering of induction-hardened steel is a form of subcritical heat treatment, primarily carried out to increase ductility, toughness, and dimensional stability, to relieve residual stresses, and to obtain specific values of mechanical properties. This article describes tempering with...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005882
EISBN: 978-1-62708-167-2
... Table 1 Process schedule for induction scan hardening axle shaft Step Time period, s Scan speed, mm/s Power, kW Spray quench 1(dwell) 9 … 36.5 No 2 1.5 15 23.9 No 3 6 8 35.4 Yes 4 99 8 35.4 Yes 5 14.65 8 32.0 Yes 6 60 8 … Yes Source...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005897
EISBN: 978-1-62708-167-2
... the fully loaded coil, steady-state, and coil emptying stages, assuming constant coil current. Source: Ref 16 Abstract Estimation of process parameters for selective heating and heat treating of simple- and complex-shaped workpieces in induction hardening can be accurately carried out using...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... application of non-destructive technology. It describes the process involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
... Abstract This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001028
EISBN: 978-1-62708-161-0
... severe for carbon grades than for alloy grades of equivalent carbon content. The relatively low hardenability of carbon steels is a primary reason for choosing them in preference to alloy steels for parts that are to be locally heat treated by flame or induction hardening. Fabrication processes are...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006321
EISBN: 978-1-62708-179-5
... Abstract Gray irons are a group of cast irons that form flake graphite during solidification, in contrast to the spheroidal graphite morphology of ductile irons. This article describes surface hardening of gray irons by flame and induction heating. It provides information on the classification...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005862
EISBN: 978-1-62708-167-2
... Abstract Induction heating for hardening of steels has advantages from the standpoint of quenching because parts are individually processed in a controlled manner. This article provides information on the effect of agitation, temperature, hardening, residual stresses, and quenching media, on...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
... Abstract This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and...