Skip Nav Destination
Close Modal
By
Manijeh Razeghi
Search Results for
indium plating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 135
Search Results for indium plating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001249
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the electrodeposition of indium and its alloys, such as indium-antimony, indium-gallium, and indium-bismuth, in nonaqueous indium plating baths. It also provides information on the stripping of indium plate from plated components and presents an overview...
Abstract
This article focuses on the electrodeposition of indium and its alloys, such as indium-antimony, indium-gallium, and indium-bismuth, in nonaqueous indium plating baths. It also provides information on the stripping of indium plate from plated components and presents an overview of the specifications, standards, and hazards of indium plating.
Image
Indium-plated crankshaft bearing for a high-performance reciprocating engin...
Available to PurchasePublished: 01 January 1990
Fig. 1 Indium-plated crankshaft bearing for a high-performance reciprocating engine. The indium is applied as an electroplate on a lead-bronze shell. Courtesy of Vandervel America, Inc.
More
Book Chapter
Electrodeposition Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also...
Abstract
Copper can be electrodeposited from numerous electrolytes. Cyanide and pyrophosphate alkalines, along with sulfate and fluoborate acid baths, are the primary electrolytes used in copper plating. This article provides information on the chemical composition, plating baths, and operating conditions of electrodeposition processes for chromium plating, nickel plating, iron plating, cadmium plating, zinc plating, indium plating, lead plating, tin plating, silver plating, gold plating, brass plating, bronze plating, tin-lead plating, zinc-iron plating, and zinc-nickel plating. The article also discusses selective plating, electroforming, and other processes and where they are typically used.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001092
EISBN: 978-1-62708-162-7
... as an oxygen scavenger, resulting in alloys with improved tensile strength, ductility, and resistance to discoloration. Indium is still used in dental alloys. Dr. Murray originally was interested in using indium as an addition to silver-plated flatware. During the period from 1926 to 1934, he and his...
Abstract
This article focuses on the use of indium and bismuth in low-melting-temperature solders and fusible alloys. It describes how the two elements typically occur in nature and how they are recovered and processed for commercial use. It also provides information on designations, classification, composition, properties (including temperatures ranges), and some of the other ways in which indium and bismuth alloys are used.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003636
EISBN: 978-1-62708-182-5
... of the embrittling species similar to that proposed for LMIE controls crack propagation. Investigations of SMIE The first investigations of delayed failure were reported in cadmium-, zinc-, and indium-plated tensile specimens of 4340, 4130, 4140, and 18% Ni maraging steel in the temperature range of 200...
Abstract
Embrittlement that occurs below the melting point of the embrittling species is known as solid metal induced embrittlement (SMIE) of metals. This article provides a discussion on the characteristics and investigations of SMIE, liquid metal induced embrittlement, and delayed failure. It also describes the mechanism of SMIE.
Book Chapter
Compatibility Guide
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006541
EISBN: 978-1-62708-183-2
... (Cu) G Lead Paint H Tin, indium, Sn-Pb Paint I Stainless steel, martensitic and ferritic Paint or resin J Chromium, molybdenum, tungsten Metallic coating K Stainless steel, austenitic, precipitation hardened, heat resistant Metallic coating L Brass, leaded bronze Metallic...
Abstract
This guide rates the compatibility of dissimilar structural materials joined together for service in seawater, marine atmosphere, or industrial atmosphere. It contains a table that indicates the material code and most generally effective surface treatment typically used to reduce corrosion of bare metals.
Book Chapter
Soldering
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
... material, the temperature conditions that are expected during service, and the pasty range of the alloy. The melting characteristics of solders are expressed as the solidus and the liquidus temperatures for the alloy. Solders composed of one metallic element, such as tin or indium, have a single melting...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
..., leaded steel gears have cracked during induction-hardening heat treatments, and warm punching of leaded steel shafts has resulted in unexpected fracture during the forming operation. Cadmium-plated titanium and steels are embrittled during high-temperature service by molten cadmium. Indium, used...
Abstract
Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size, temperature and strain rate, stress, inert carriers, and fatigue, on LMIE. It provides a detailed discussion on LMIE in ferrous and nonferrous metals and their alloys. In addition, the article highlights the ways of preventing embrittlement in metals and alloys.
Book Chapter
Selective (Brush) Plating
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... alkaline for heavy buildup) Copper (neutral) Iron Lead (alkaline) Lead (for alloying) Tin (alkaline) Zinc (acid) Zinc (alkaline) Zinc (bright) Zinc (neutral) Plating solutions for precious metals Gallium Gold (acid) Gold (alkaline) Gold (neutral) Indium...
Abstract
Selective plating, also known as brush plating, differs from traditional tank or bath plating in that the workpiece is not immersed in a plating solution (electrolyte). Instead, the electrolyte is brought to the part and applied by a handheld anode or stylus, which incorporates an absorbent wrapping for applying the solution to the workpiece (cathode). This article focuses on the selective plating systems that include a power pack, plating tools, anode covers, specially formulated plating solutions, and any auxiliary equipment required for the particular application. It provides a detailed account of the applications of selective plating, with examples. The article describes the advantages, limitations, key process elements, and health and safety considerations of selective plating. It also includes the most important industrial, government, and military specifications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
..., when compared with tin-lead alloys. Tin plate is sometimes used as a protective finish on device leads and terminations, although a solder dip coating is the preferred finish. Tin-base tin-lead solders represent the most widely used solders for electronic assembly: eutectic 63Sn-37Pb, near-eutectic...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Book Chapter
Chemical Vapor Deposition of Semiconductor Materials
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001284
EISBN: 978-1-62708-170-2
... responsible for epitaxial growth also are presented. Technique Principles Vapor-Phase Epitaxy Tietjen and Amick ( Ref 1 ) demonstrated the growth of gallium arsenide phosphide (GaAsP) by VPE in 1966. The growth of materials based on indium phosphide (InP) can be achieved in a horizontal reactor...
Abstract
This article describes the vapor-phase growth techniques applied to the epitaxial deposition of semiconductor films and discusses the fundamental processes involved in metal-organic chemical vapor deposition (MOCVD). It reviews the thermodynamics that determine the driving force behind the overall growth process and the kinetics that define the rates at which the various processes occur. The article provides information on the reactor systems and hardware, MOCVD starting materials, engineering considerations that optimize growth, and the growth parameters for a variety of Group III-V, II-VI, and IV semiconductors.
Book Chapter
Metallography and Microstructures of Tin and Tin Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
... of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems. electron microscopy etchants etching grinding metallography microstructure mounting polishing sectioning specimen...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Book Chapter
Physical Vapor Deposition
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... Abstract Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
... according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Book Chapter
Friction and Wear of Sliding Bearing Materials
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
... surfaces are all b-sub-group metals, with effective atomic radii substantially greater than that of iron. Only seven of these metals are commercially significant: silver, cadmium, indium, tin, antimony, lead, and bismuth. Of these, tin and lead offer the most attractive combinations of cost, availability...
Abstract
A sliding bearing (plain bearing) is a machine element designed to transmit loads or reaction forces to a shaft that rotates relative to the bearing. This article discusses the properties of bearing materials. It provides information on bearing material systems: single-metal systems, bimetal systems, and trimetal systems. The article describes the designations, nominal compositions, mechanical properties, and applications of various sliding bearing alloys: tin-base alloys, lead-base alloys, copper-base alloys, aluminum-base alloys, silver-base alloys, zinc-base alloys, additional metallic materials, nonmetallic materials. It describes casting processes, powder metallurgy processes, and electroplating processes. The article also discusses the selection criteria for bearing materials.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... and ZrO 2 ) Deposition of optically clear, electrically conducting layers (indium-tin-oxide) ( Ref 112 ) Deposition of permeation barriers on webs ( Ref 113 , 114 , 115 ) Ion plating has also been used to coat very large structural parts with aluminum for corrosion protection (replacing...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006639
EISBN: 978-1-62708-213-6
... generating the signal for a spectral line. A detector is generally a channel plate or an electron multiplier. Fig. 8 Schematic presentation of a spherical-sector analyzer with a monochromatized x-ray source, reprinted with permission from Elsevier ( Ref 10 ) Modern machines employ...
Abstract
This article focuses on the principles and applications of X-ray photoelectron spectroscopy (XPS) for the analysis of elemental and chemical composition. The discussion covers the nomenclature, instruments, and specimen preparation process of XPS. Some of the factors pertinent to the calibration of materials for accurate measurements using XPS are provided, along with some aspects of the accuracy in quantitative analysis by XPS. In addition, the article presents examples of how XPS data can be used to solve problems with surface interactions.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001253
EISBN: 978-1-62708-170-2
... Abstract Gold electroplating was invented in 1840. During the first 100 years electrodeposited gold was used primarily for its aesthetic appeal as a decorative finish. This article provides a description of the gold plating process and the electrolytes used. It discusses the decorative...
Abstract
Gold electroplating was invented in 1840. During the first 100 years electrodeposited gold was used primarily for its aesthetic appeal as a decorative finish. This article provides a description of the gold plating process and the electrolytes used. It discusses the decorative and industrial applications of gold plating. The article reviews factors affecting the dragout of gold solution.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... commonly plated are copper, chromium, nickel, iron, cadmium, zinc, indium, tin, lead, silver, and gold. Brass, bronze, zinc-iron, and zinc-nickel alloys also are plated. Each of these metals requires a different bath and different bath operating parameters (temperature, cathode current density, voltage, pH...
Abstract
This article provides a brief discussion on the common types of overlayers that can be used on a metal surface to protect it from corrosion. These overlayers include phosphate, chromate, and chromate-free conversion coatings; hot dip galvanizing; cementitious linings; glass and porcelain enamels; electroplating; thermal spray coatings; and rubber linings.
Book Chapter
Lead and Lead Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
... alloys (0.06% Cu, 0.045–0.055% Te, 99.82–99.85% Pb min) L51123, L51124 Copperized soft lead (0.06% Cu, 99.9% Pb min) L51125 Copper-bearing alloy (51% Pb, 3.0% Sn, other 0.8% max, bal Cu) (alloy 485 in SAE J460) L51180 Lead-indium alloys (UNS L51500–L51599) Lead-indium-silver solder...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
1