Skip Nav Destination
Close Modal
Search Results for
indirect extrusion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100 Search Results for
indirect extrusion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004006
EISBN: 978-1-62708-185-6
... or indirect extrusion. The article illustrates the significance of extrusion speeds and temperatures in hot extrusion. It describes the basic types of presses used in the hot extrusion of metals. The article provides information on the characterization of extruded shapes and explains the operating parameters...
Abstract
Hot extrusion is a process in which wrought parts are formed by forcing a heated billet through a shaped die opening. This article discusses nonlubricated and lubricated hot extrusion. The two nonlubricated hot extrusion methods are forward or direct extrusion and backward or indirect extrusion. The article illustrates the significance of extrusion speeds and temperatures in hot extrusion. It describes the basic types of presses used in the hot extrusion of metals. The article provides information on the characterization of extruded shapes and explains the operating parameters, including extrusion velocity, amount of pressure required, and type of lubricant, for successful and efficient hot extrusion. The article concludes with a discussion on applications and design methodology that provides insight into CAD/CAM of extrusion dies.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004015
EISBN: 978-1-62708-185-6
... performance. The article discusses different aluminum extrusion processes, such as the direct extrusion process and the indirect extrusion process. It schematically illustrates the plotting of flow stress and extrudability for several types of aluminum alloys. The article concludes with information...
Abstract
Aluminum and aluminum alloys are very suitable for extrusion and many types of profiles can be produced from easily extrudable alloys. This article lists the basic characteristics of aluminum and its alloys. It tabulates the aluminum extrusion alloys by series and lists the typical applications for 6xxx series aluminum extrusions. The article discusses three broad categories of extrusion profiles: solid profile, hollow profile, and semi hollow profile. It provides information on weldability and machinability, which are often considered in profile design and product performance. The article discusses different aluminum extrusion processes, such as the direct extrusion process and the indirect extrusion process. It schematically illustrates the plotting of flow stress and extrudability for several types of aluminum alloys. The article concludes with information on the heat treatment and precipitation hardening for alloys, such as 2xxx, 6xxx, and 7xxx.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006534
EISBN: 978-1-62708-207-5
... a workpiece during extrusion is pushed through a die (direct extrusion) or a die is pushed over a stationary workpiece (indirect extrusion). There also are obvious differences in hardware and process layout and some basic process differences. The metal is generally subjected to much greater compression...
Abstract
This article describes the direct hot extrusion process and the typical sequence of operations for producing extruded aluminum shapes from soft and medium-grade aluminum alloys, hard alloys, and aluminum-matrix composites. It discusses key process variables, including extrusion speed and exit temperature, and their effect on product quality. The article also provides information on extrusion presses, press dies, and tooling, and addresses quality issues such as surface defects, blistering, and internal cracking. It concludes with a discussion on the drawing of solid section and aluminum tube.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
...; these are recommended texts that provide an excellent background for understanding the process. There are two main types of extrusion mechanisms: direct and indirect, or inverted ( Fig. 1 ). In direct extrusion, the ram pushes a workpiece forward through a die, causing a reduction in cross-sectional area...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006385
EISBN: 978-1-62708-192-4
... and is extremely popular for extruding aluminum. It has the advantage of allowing inexpensive die production (through wire electrical discharge machining [EDM] or other approach) and competes well with casting, forging, machining, and so forth. Indirect, Reverse, Inverted, or Backward Extrusion In indirect...
Abstract
This article discusses two basic forms of extrusion: cold and hot. It provides information on three types of extrusion processes, namely, direct extrusion, reverse extrusion, and hydrostatic extrusion. The article also discusses the mechanics, analysis, tooling and die design of extrusion as well as thermodynamics. The finite-element method suitable for simulation of metal forming processes is explained. The article examines the extrusion defects that are divided into three different categories including surface, subsurface, and internal type. It includes information on friction and lubrication modeling of extrusion processes. The article also discusses the fundamentals of extrusion technology of titanium alloys and aluminum. It concludes with information on two forms of wear in extrusion, namely, adhesive and abrasive wear.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006556
EISBN: 978-1-62708-290-7
... Maker. (b) Green casting pattern (left), semifinished casting (right), and finished item (center). Source: Ref 3. Courtesy of J. McMahon/3D Inkjet Museum Abstract Abstract The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal...
Abstract
The additive manufacturing technologies in the casting of precious metals are divided into two groups: indirect metal methods and direct metal methods. Besides providing a process overview of both of these methods, the focus of this article is on the characteristics, process steps, applications, and advantages of direct metal methods, namely laser melting, material extrusion, binder jetting, material jetting, and vat photopolymerization methods.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
... container dimensions, which typically range from 15 to 28 cm (6 to 11 in.) in diameter. Billets with as-cast surfaces are acceptable in the direct extrusion process but must be scalped for indirect extrusion. Molten metal must be composition controlled and processed before ingots are cast. Alloying...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
... be scalped for indirect extrusion. Fig. 2 Vertical direct chill billet casting machine. Courtesy of Light Metal Age , Dec 1998 Ingots for Rolling Terminologies differ but ingots cast to provide starting stock for sheet, plate, and foil are called sheet ingots or rolling ingots...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
...Abstract Abstract This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
... of IdraPrince Inc. Aluminum Indirect Semisolid Metalworking Component Microstructures When examining microstructures, the feedstock should be kept in mind; continuously cast bar stock and grain-refined extrusion billets will produce very different microstructures in the final component ( Ref 12...
Abstract
This article begins with a description of indirect and direct semisolid metalworking processes. It then provides information on alloy compositions of common aluminum semisolid metalworking alloys and primary die-cast magnesium alloys in a tabular form. The article describes the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures, and indirect semisolid metalworking component microstructures of series 300 aluminum casting alloys and magnesium die-casting alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006518
EISBN: 978-1-62708-207-5
...) or indirect (reverse) extrusion process ( Fig. 7 ). In direct extrusion, a billet is pushed through a die. Frictional forces are high due to the large surface area at the billet/container interface during direct extrusion. A high extrusion force is required to initiate the process due to the friction...
Abstract
This article introduces the basic characteristics, processes, and product forms associated with the five major categories of aluminum wrought products, namely, flat-rolled products (sheet, plate, and foil); rod, bar, and wire; tubular products; profiles; and forgings. It summarizes the various product forms in which commonly used wrought aluminum alloys are available. The article also provides design guidelines for aluminum extrusions and discusses various forming methods.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
...Abstract Abstract An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability...
Abstract
An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various mechanical testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally, the article details the various factors influencing workability in bulk deformation processes and formability in sheet-metal forming.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
... a supply chain concern for many device manufacturers. Manufacturing Process Processing of polymers during polymerization and downstream processes such as extrusion and injection molding can expose the material to conditions such as shear and temperature. Depending on the tolerance and process window...
Abstract
This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response of the polymer from a biocompatibility perspective. These include raw materials, the manufacturing process, cleaning and sterilization processes, and biodegradation and biostability. The article reviews the general testing methods of polymers, such as chemical, mechanical and thermal. It concludes with a section on the guidance, provided by the regulatory authorities, on the biocompatibility testing of polymers and polymer-containing devices that can aid in selecting the right analysis.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
... connecting rods, transmission parts, and hand tool components. Hot pressing is used primarily for specialty materials such as tungsten carbide, beryllium, and ceramics. Hot pressing is also used as a consolidation process to produce billets for further processing by conventional forging or extrusion...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... or reverse extrusion. Lack of flash at the parting line decreases stress-corrosion cracking in forging alloys susceptible to this type of failure. Multidirectional hot working, characteristic of this process, decreases adverse directional effects on mechanical properties. Die Design and Materials...
Abstract
Forging machines use a wide variety of hammers, presses, and dies to produce products with the desired shape, size, and geometry. This article discusses the major types of hammers (gravity-drop, power-drop, high speed, and open-die forging), and presses (mechanical, hydraulic, screw-type, and multiple-ram). It further discusses the technologies used in the design of dies, terminology, and materials selection for dies for the most common hot-forging processes, particularly those using vertical presses, hammers, and horizontal forging machines. A brief section is included on computer-aided design in the forging industry. Additionally, the article reviews specific characteristics, process limitations, advantages, and disadvantages of the most common forging processes, namely hot upset forging, roll forging, radial forging, rotary forging, isothermal and hot-die forging, precision forging, and cold forging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
..., stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer...
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006569
EISBN: 978-1-62708-290-7
... into each layer to create a loosely bound powder preform ( Fig. 2a ). Although the printing step seems simple, there are many motions involved in preparing the print layer and managing the inkjet system during printing. Compared with extrusion AM, which requires only a gantry and nozzle, binder-jetting...
Abstract
This article focuses on binder-jetting technologies in additive manufacturing (AM) that produce metal artifacts either directly or indirectly. The intent is to focus on the most strategic and widespread uses of the binder jetting technology and review some of the challenges and opportunities for that technology. The discussion includes a historical overview and covers the major steps involved and the advantages of using the binder jetting process. The major steps of the process covered include printing, curing, de-powdering, and sintering.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009216
EISBN: 978-1-62708-176-4
... values should be based on that producer's data that yield the lowest A and B values. Direct and Indirect Computation The only room-temperature design allowables that are regularly determined by direct computation are F tu and F ty . This procedure usually is limited to a specified...
Abstract
Statistical analysis of mechanical property data is the most reliable method for determination of minimum design allowables. This article describes the general procedures used to determine design allowables. It provides information on the determination of a distribution form. The article presents statistical methods which help in determining design allowables. These methods include direct computation for normal distribution, direct computation for an unknown distribution, computation of derived properties, and regression analysis. The article concludes with information on low- and elevated-temperature design properties.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002479
EISBN: 978-1-62708-194-8
... and indirect cost as well as quality of assemblies are determined by the number of parts; the ease with which the parts and components are handled, assembled, procured, and inspected; and the functionality, serviceability, maintainability, reliability, and durability achieved by the finished device or product...
Abstract
This article describes the general concepts and practices related to manufacturing and design. It discusses the activities of design and manufacturing by placing it in the context of the business system that they support. The article presents an overview of the manufacturing technology field from a design and material selection perspective. It provides an insight to the complex relationship among design, material selection, and manufacturing. The article offers information on modern design for manufacturing practices that are widely used in the industry.