Skip Nav Destination
Close Modal
Search Results for
indentation hardness testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 335 Search Results for
indentation hardness testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003274
EISBN: 978-1-62708-176-4
... issues of the Knoop and the Vickers hardness in ceramics. It explicates how to estimate fracture toughness from Vickers indentation cracking. The article also provides information on instrumented hardness testing and the Meyer law. indentation hardness testing microindentation hardness ceramics...
Abstract
Hardness characterizes the resistance of the ceramic to deformation, densification, displacement, and fracture. It is usually measured with conventional microindentation hardness machines using the Knoop or the Vickers diamond indenters. This article discusses the metrology issues of the Knoop and the Vickers hardness in ceramics. It explicates how to estimate fracture toughness from Vickers indentation cracking. The article also provides information on instrumented hardness testing and the Meyer law.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009224
EISBN: 978-1-62708-176-4
...Abstract Abstract A newly developed theory on plasticity makes it possible to include elastic effects, which play a major role when using blunt hardness indenters. This article reviews the new theory and explains several phenomena associated with practical hardness testing. In the indentation...
Abstract
A newly developed theory on plasticity makes it possible to include elastic effects, which play a major role when using blunt hardness indenters. This article reviews the new theory and explains several phenomena associated with practical hardness testing. In the indentation hardness test, a blunt indenter that approximates a flat punch is forced into a plane surface. The effective cone angle for most indenters is such that some upward flow results even when there is sufficient material surrounding the indenter to provide a full elastic constraint. When loaded by a blunt indenter, materials with high values of Young's Modulus of Elasticity/uniaxial flow stress (E/Y) (metals) appear to develop a Hertzian stress distribution over the contact. In contrast, materials with low values of E/Y (glasses and polymers) develop a uniform distribution of stress.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003277
EISBN: 978-1-62708-176-4
...), and an overall repeatability and reproducibility (R&R) index. This article briefly reviews the general method of GRR studies and its application for indentation hardness testing. Gage Repeatability and Reproducibility Evaluation Methods A variety of methods for performing the GRR study are in use...
Abstract
The gage repeatability and reproducibility (GRR) study is a procedure for determining the repeatability of a test instrument and the reproducibility of a specific gage in operation. This article reviews the general method of GRR studies and its application for indentation hardness testing. It describes a long method and a short method for evaluation of GRR. The article analyzes factors of hardness testing instruments and provides guidelines for hardness tests. It concludes with a list of suggestions that can improve hardness tests.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003282
EISBN: 978-1-62708-176-4
...Abstract Abstract This article reviews the origins and development of scratch tests, the experimental configurations used in these tests, and the application of the tests to characterize the mechanical response of materials. It provides information on the measurement of indentation hardness...
Abstract
This article reviews the origins and development of scratch tests, the experimental configurations used in these tests, and the application of the tests to characterize the mechanical response of materials. It provides information on the measurement of indentation hardness. The article describes the important parameters of the scratch test. Finally, it discusses the sliding indentation fracture process of brittle materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003275
EISBN: 978-1-62708-176-4
...Abstract Abstract Miscellaneous hardness tests encompass a number of test methods that have been developed for specific applications. These include dynamic, or "rebound," hardness tests using a Leeb tester or a Scleroscope; static indentation tests on rubber or plastic products using...
Abstract
Miscellaneous hardness tests encompass a number of test methods that have been developed for specific applications. These include dynamic, or "rebound," hardness tests using a Leeb tester or a Scleroscope; static indentation tests on rubber or plastic products using the durometer or IRHD testers; scratch hardness tests; and ultrasonic microindentation testing. This article reviews the procedures, equipment, and applications associated with these alternate hardness test methods.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003302
EISBN: 978-1-62708-176-4
..., dynamic indentation testing reveals a significant effect of loading rates on the hardness and the induced plastic zone size in metals and on the hardness and induced crack sizes of brittle materials. The article also explains the rebound and pendulum methods for dynamic hardness testing. metals...
Abstract
This article describes a method for determining the dynamic indentation response of metals and ceramics. This method, based on split Hopkinson pressure bar testing, can determine rate-dependent characteristics of metals and ceramics at moderate strain rates. For example, dynamic indentation testing reveals a significant effect of loading rates on the hardness and the induced plastic zone size in metals and on the hardness and induced crack sizes of brittle materials. The article also explains the rebound and pendulum methods for dynamic hardness testing.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003270
EISBN: 978-1-62708-176-4
... metals with fully annealed metals. The article discusses the plastic deformation of ideal plastic metals under an indenter, by a flat punch, and by spherical indenters. The classification of the hardness tests using various criteria, including type of measurement, magnitude of indentation load...
Abstract
Hardness testing is perhaps the simplest and the least expensive method of mechanically characterizing a material. This article provides an overview of the principles of hardness testing. It compares Brinell with Meyer hardness testing and hardness testing of fully cold worked metals with fully annealed metals. The article discusses the plastic deformation of ideal plastic metals under an indenter, by a flat punch, and by spherical indenters. The classification of the hardness tests using various criteria, including type of measurement, magnitude of indentation load, and nature of the test, is also provided.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003271
EISBN: 978-1-62708-176-4
...Abstract Abstract This article describes the principal methods for macroindentation hardness testing by the Brinell, Vickers, and Rockwell methods. For each method, the test types and indenters, scale limitations, testing machines, calibration, indenter selection and geometry, load selection...
Abstract
This article describes the principal methods for macroindentation hardness testing by the Brinell, Vickers, and Rockwell methods. For each method, the test types and indenters, scale limitations, testing machines, calibration, indenter selection and geometry, load selection and impression size, testing methodology, and testing of specific materials are also discussed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003276
EISBN: 978-1-62708-176-4
... thickness, size and shape of the workpiece, specimen surface flatness and surface condition, and indent location. The article focuses on the selection for specific types of materials, such as steels, cast irons, nonferrous alloys, and plastics, and industrial applications, of hardness tests. hardness...
Abstract
This article reviews the factors that have a significant effect on the selection and interpretation of results of different hardness tests, namely, Brinell, Rockwell, Vickers, and Knoop tests. The factors concerned include hardness level (and scale limitations), specimen thickness, size and shape of the workpiece, specimen surface flatness and surface condition, and indent location. The article focuses on the selection for specific types of materials, such as steels, cast irons, nonferrous alloys, and plastics, and industrial applications, of hardness tests.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001297
EISBN: 978-1-62708-170-2
..., are discussed. For films which are adherent to their substrates, indentation testing is used to evaluate hardness, creep, and strength. adherent films beam-bending methods biaxial testing creep freestanding films hardness indentation testing mechanical properties strength substrates thin films...
Abstract
This article focuses on the evaluation of mechanical properties of freestanding films and films adherent to their substrates. Common methods of testing freestanding films, including uniaxial tensile testing, uniaxial creep testing, biaxial testing, and beam-bending methods, are discussed. For films which are adherent to their substrates, indentation testing is used to evaluate hardness, creep, and strength.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003273
EISBN: 978-1-62708-176-4
... emphasizes the better-developed measurement techniques and procedures and calibrations required to obtain accurate and meaningful measurements. instrumented indentation testing hardness elastic modulus calibration INSTRUMENTED INDENTATION TESTING (IIT), also known as depth-sensing indentation...
Abstract
This article provides a practical reference guide for instrumented indentation testing (IIT). It summarizes the various types of indenters used in IIT and parameters describing their geometries. The article discusses the physical principles and models used to determine hardness and elastic modulus from indentation load displacement data. Indentation deformation can be time-dependent, with the extent and nature of the time dependence strongly influenced by temperature. The article examines the methods for probing and characterizing the time-dependent phenomena. It also emphasizes the better-developed measurement techniques and procedures and calibrations required to obtain accurate and meaningful measurements.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... of indentation is operator dependent and results in variation Microindentation hardness testing Vickers hardness Hardness Result does not always correlate to bulk material hardness Values vary with applied loads Requires a polished surface Knoop hardness Hardness Result does not always correlate...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003258
EISBN: 978-1-62708-176-4
... and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various...
Abstract
An important activity in metalworking facilities is the testing of raw materials for characteristics that ensure the integrity and quality of the products made. This article reviews the common material parameters that can have a direct or indirect influence on workability and product quality. These include strength, ductility, hardness, strain-hardening exponent, strain-rate effects, temperature effects, and hydrostatic pressure effects. The article also reviews the material behavior characteristics typically determined by mechanical testing methods. It discusses various mechanical testing methods, including the tension test, plane-strain tension test, compression test, plane-strain compression test, partial-width indentation test, and torsion test. Aspects of testing particularly relevant to workability and quality control for metalworking processes are also described. Finally, the article details the various factors influencing workability in bulk deformation processes and formability in sheet-metal forming.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... to the plastic flow stress of the material. Table 1 lists the major types of hardness testers, which can be either portable instruments or laboratory devices. Only static indentation and rebound testing are discussed in this article. These two methods account for virtually all routine hardness testing...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... toughness Microstructure Corrosion resistance The influence of the parameters listed in Table 2 can be explained by their effect on the mechanism by which material is removed from a worn surface. The simplest model of abrasive wear is one in which rigidly supported hard particles indent...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... the approach of Mutton ( Ref 10 ) and Moore ( Ref 11 ). Mechanical Properties The resistance to indentation (hardness) is an important variable in determining abrasion resistance. Laboratory wear tests indicate that the abrasive wear resistance for particular material types increases with increasing...
Abstract
Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting surfaces. Adhesive wear, the type of wear that occurs between two mutually soluble materials, is also discussed, as is erosive wear, liquid impingement, and cavitation wear. The article also presents a procedure for failure analysis and provides a number of detailed examples, including jaw-type rock crusher wear, electronic circuit board drill wear, grinding plate wear failure analysis, impact wear of disk cutters, and identification of abrasive wear modes in martensitic steels.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003272
EISBN: 978-1-62708-176-4
..., suggests that measurements of very low hardness values are being made, rather than measurements of very small indents. Although the term “microhardness” is well established and is generally interpreted properly by test users, it is best to use the more correct term, microindentation hardness testing...
Abstract
This article provides a discussion on the equipment used and specimen preparation for microindentation hardness testing (MHT) such as the Vickers hardness test and the Knoop hardness test. It describes the important test considerations to be considered during MHT. The article also discusses the most common hardness conversions and the applications of MHT.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003256
EISBN: 978-1-62708-176-4
..., as described in the preceding article “Introduction to the Mechanical Behavior of Nonmetallic Materials” in this Volume. This article briefly reviews the general mechanical properties and test methods for polymers and ceramics. Additional coverage is also provided in other Sections of this Volume on hardness...
Abstract
This article reviews the general mechanical properties and test methods commonly used for ceramics and three categories of polymers, namely, fibers, plastics, and elastomers. The mechanical test methods for determining the tensile strength, yield strength, yield point, and elongation of plastics include the short-term tensile test, the compressive strength test, the flexural strength test, and the heat deflection temperature test. The most commonly used tests for impact performance of plastics are the Izod notched-beam test, the Charpy notched-beam test, and the dart penetration test. Two basic test methods for a group or strand of fibers are the single-filament tension and tow tensile tests. Room temperature strength tests, high-temperature strength tests, and proof tests are used for testing the properties of ceramics.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
... of metal powders. Iron powder made by water atomization of molten iron becomes hard due to residual stresses. Hydrogen annealing the iron powder releases the stresses and minimizes the carbon and oxygen content, so that the iron powder softens. To measure particle hardness, indentation hardness tests...
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.