Skip Nav Destination
Close Modal
By
ASM International Committee on Nondestructive Testing of Composites, R.H. Bossi, D.E. Bowles, Y. Bar-Cohen, T.E. Drake ...
Search Results for
incident laser beam power
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 180
Search Results for incident laser beam power
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... variables for laser welding include incident laser-beam power, incident laser-beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent variables are depth of penetration, microstructure and mechanical properties...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
... beam power Incident laser beam diameter Absorptivity Traverse speed of the laser beam across the substrate surface Parameters such as weld design, shielding gas, gap size for butt welds, and depth of focus with respect to the substrate also play important roles. These parameters...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... is the selection of optimum independent and dependent processes. The independent process variables for laser welding include incident laser beam power, incident laser beam diameter, traverse speed, absorptivity, shielding gas, depth of focus and focal position, and weld design and gap size. The important dependent...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006545
EISBN: 978-1-62708-290-7
... materials such as copper and gold. It is currently unclear if powers of hundreds of watts will be possible with commercial green laser systems. Fig. 7 Optical reflection coefficient of titanium as a function of wavelength, assuming normal incidence. Based on data from Ref 38 , 39 In terms...
Abstract
Fusion-based additive manufacturing (AM) processes rely on the formation of a metallurgical bond between a substrate and a feedstock material. Energy sources employed in the fusion AM process include conventional arcs, lasers, and electron beams. Each of these sources is discussed, with an emphasis on their principles of operation, key processing variables, and the influence of each source on the transfer of heat and material. Common energy sources used for metals AM processes, particularly powder-bed fusion and directed-energy deposition, are also discussed. Brief sections at the end of the article discuss the factors dictating the choice of each of these energy sources and provide information on alternative sources of AM.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001398
EISBN: 978-1-62708-173-3
... configurations of production lasers were of the “blind” (no feedback) type. The system included a laser programmed for power, as well as length of heat injection time. The focal spot of the laser beam was brought to impinge on the target by moving either the target itself or the laser beam, or a combination...
Abstract
Laser soldering uses a well-focused, highly controlled beam to deliver energy to a desired location for a precisely measured length of time. This article focuses on two types of laser soldering operations, namely, blind laser soldering and intelligent laser soldering. It discusses the function of the blind laser soldering and provides a brief description on key attributes of the blind laser soldering, including repeatability, speed, quality, safety, and flexibility. The article explores the function of the intelligent laser soldering and concludes with a section on key attributes of the intelligent laser soldering. The key attributes of the intelligent laser soldering include repeatability, speed, quality, safety, cost, and flexibility.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005618
EISBN: 978-1-62708-174-0
..., and radiative heat transfer. The resulting accumulation of heat energy raises the temperature of the workpiece material so as to melt and even vaporize it. In the case of laser cutting, the torch consists of a highly focused laser light beam that reaches power densities on the workpiece of more than 100 times...
Abstract
Laser has found its applications in cutting, drilling, and shock-peening operations of manufacturing industry because of its accurate, safe, and rapid cutting property. This article provides an account on the fundamental principles of laser cutting (thermal), drilling, and shock-peening processes of which emphasis is placed on thermal laser cutting. It details the principal set-up parameters, such as the laser beam output, nozzle design, focusing optic position and characteristics, assist gases, surface conditions, and cutting speed. A discussion on the types of gas, supply system, purity level, and flow rates of lasing and assist gases is also provided. The article also describes the metallurgies and other key material considerations that impact laser-cutting performances and includes examples of laser cutting of nonmetal materials.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006532
EISBN: 978-1-62708-207-5
... region have high average beam power, better beam quality, and efficiency. They are good for cutting thicker sections (>10 mm, or 0.4 in.) with high speed. The Nd:YAG laser is more suitable in the pulse mode, in which it gives high power that allows the fine cutting of metals at thicknesses...
Abstract
This article focuses on a variety of laser beam machining (LBM) operations of aluminum and its alloys, namely, laser cutting, laser drilling, laser milling, laser turning, laser grooving, laser scribing, laser marking, and laser micromachining. It presents different approaches for carrying out machining operations, laser processing parameters, efficiency and accuracy of the process, and the effect of laser processing parameters on the quality of the machined surface. The article provides an overview of the various conventional (chip forming) and nonconventional machining techniques employed for aluminum-based materials. A comparison of the various aspects of LBM with other non-conventional techniques is also presented. The article also describes the features of LBM techniques employed for aluminum and its alloys for different types of machining.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... welding electrons focused beam diameter high energy density electron welding keyhole-mode welding laser beam welding photons power density boundary HIGH ENERGY DENSITY BEAM WELDING refers to electron or laser processes where a beam of electrons or photons, respectively, can be focused to power...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006471
EISBN: 978-1-62708-190-0
...). It is important to match impedances when selecting a search unit for a particular instrument. Both the ultrasound energy transmitted into the material being inspected (radiated power) and beam divergence are directly related to the size (active area) of the transducer element. Thus, it sometimes is advisable...
Abstract
This article discusses the advantages, disadvantages, applications, and selection criteria of various technologies and transduction modalities that can generate and detect ultrasonic waves. These include piezoelectric transducers, electromagnetic acoustic transducers (EMATs), laser ultrasound phased array transducers, magnetostriction transducers, and couplants. The article discusses four basic types of search units with piezoelectric transducers. These include the straight-beam contact type, the angle-beam contact type, the dual-element contact type, and the immersion type. The article concludes with information on immersion or contact type focused search units.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... welding of tube and pipe. Wire Joints The joint configurations for wires shown in Fig. 2 were developed by the electronics industry. For wire-to-wire joints, the two wires must share the incident laser energy. In a cross joint, for example, the laser beam should be directed at the intersection...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003681
EISBN: 978-1-62708-182-5
... to promote corrosion resistance. surface composition ion implantation rapid melt quenching corrosion resistance energy beams high-power laser melting surface modification SURFACE MODIFICATION, in the context of this article, is the alteration of surface composition or structure by the use...
Abstract
Surface modification is the alteration of the surface composition or structure using energy or particle beams. This article discusses two different surface modification methods. The first, ion implantation, is the introduction of ionized species into the substrate using kilovolt to megavolt ion accelerating potentials. The second method, laser processing, is high-power laser melting with or without mixing of materials precoated on the substrate, followed by rapid melt quenching. The article also describes the advantages and disadvantages of the surface modification approach to promote corrosion resistance.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001481
EISBN: 978-1-62708-173-3
.... The attenuation of the laser beam in the vertical direction has been accounted for ( Ref 26 ) by calculating the temperature at a depth, d , below the surface. If the temperature at depth, d , exceeds the boiling point of the material, then point d is deemed to be transparent. The incident power...
Abstract
This article briefly reviews the physical phenomena that influence the input-energy distribution. It discusses the several simplified and detailed heat source models used in the modeling of arc welding, high-energy-density welding, and resistance welding processes.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006955
EISBN: 978-1-62708-439-0
... . Sample images are shown at Z = 22 and 26 mm (0.87 and 1.02 in.). (b) Two-dimensional Gaussian fit for a laser beam image Laser Power Control For a standard laser unit, the laser power is set by two voltage inputs: a digital input (DI) to turn the laser power on/off, and an analog input (AI...
Abstract
Part quality in additive manufacturing (AM) is highly dependent on process control, but there is a lack of adequate AM control methods and standards. Laser powder-bed fusion (L-PBF) is one of the most-used metal AM techniques. This article focuses on the following laser control parameters: laser focus, laser power, laser position, and laser power-position synchronization. It then provides a discussion on laser scan strategies. The article also provides an overview of the AM control framework, the two major sections of which are software and hardware.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... from the bottom of the roller. Incident angles of the laser beam were 45 μin. CO 2 laser and 30 μin. fiber laser, respectively. Laser Roll Welding of Dissimilar Metals Steel and Aluminum Sheet Joining Fusion welding of aluminum to steel is impractical, because brittle intermetallic compounds...
Abstract
This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding of dissimilar metals.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006461
EISBN: 978-1-62708-190-0
... to generate ultrasound directly on a material without the requirement for a couplant ( Ref 13 , 15 , 28 , 29 , 30 ) and can be operated in the thermal or ablative regimes ( Ref 14 ); at low incident powers, the laser heats a small region of the sample, leading to a stress wave due to thermal expansion...
Abstract
This article provides an overview of the characteristics of Rayleigh waves plus methods for generation and detection of waves, including using piezoelectric transducers or noncontact techniques such as lasers, electromagnetic acoustic transducers, or air-coupled ultrasonics. It reviews the methods for using Rayleigh waves for defect detection and materials characterization, alongside nonlinear ultrasonic inspection and surface acoustic wave (SAW) microscopy. The article concludes with information on the standards that use Rayleigh waves for nondestructive evaluation (NDE) of different structures.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... for these measurements. The incident beam is typically an Ar + or a Kr + laser. For SERS the choice of the laser frequency that coincides with the electronic structure of the species of interest allows for thousand-fold signal enhancement. Thus SERS becomes an advantageous technique compared to Raman spectroscopy...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
... from media 1 to media 2 for a normal incidence sound beam is given by: (Eq 3) T = 4 Z 2 Z 1 / ( Z 2 + Z 1 ) 2 and (Eq 4) R = [ ( Z 2 − Z 1 ) / ( Z 2 + Z 1 ) ] 2 respectively, where Z 1 and Z 2...
Abstract
This article introduces the principal methodologies and some technologies that are being applied for nondestructive evaluation of composite materials. These include ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability to other types of composites such as metal-matrix composites and ceramic-matrix composites.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005603
EISBN: 978-1-62708-174-0
... ( r r ′ ) 2 ] where f is the bulk energy-transfer coefficient, Q is the magnitude of the heat input per unit time ( Q being the product of the welding current and voltage for arc processes and laser power for laser beam welding), r is the distance from the center of the heat...
Abstract
Three types of energy are used primarily as direct heat sources for fusion welding: electric arcs, laser beams, and electron beams. This article reviews the physical phenomena that influence the input-energy distribution of the heat source for fusion welding. It also discusses several simplified and detailed heat-source models that have been used in the modeling of arc welding, high-energy-density welding, and resistance welding.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005513
EISBN: 978-1-62708-197-9
..., or a mixture thereof. For example, in laser and electron beam deposition, the incoming material can be powder or wire, which is melted by the energy of the beam. The material enters into a melt pool, which solidifies to fuse with the substrate when the beam moves away. In spray forming, a thin stream of molten...
Abstract
Additive manufacturing produces a change in the shape of a substrate by adding material progressively. This article discusses the simulation of laser deposition and three principal thermomechanical phenomena during the laser deposition process: absorption of laser radiation; heat conduction, convection, and phase change; and elastic-plastic deformation. It provides a description of four sets of data used for modeling and simulation of additive manufacturing processes, namely, material constitutive data, solid model, initial and boundary conditions, and laser deposition process parameters. The article considers three aspects of simulation of additive manufacturing: simulation for initial selection of process parameter setup, simulation for in situ process control, and simulation for ex situ process optimization. It also presents some examples of computational mechanics solutions for automating various components of additive manufacturing simulation.
1