1-20 of 513

Search Results for implants

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... Abstract In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals...
Book Chapter

By Ortrun E.M. Pohler
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... Abstract This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006404
EISBN: 978-1-62708-192-4
... Abstract The human internal environment plays a vital role in the friction and wear of implants and prosthetic devices. This article describes the tribological/wear behavior of implants. It discusses the classification of active tribological pairs, namely, amphiarthosis joints and diarthosis...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005678
EISBN: 978-1-62708-198-6
... simulators medical implants metals orthopedic surgery physical properties pin-on-disk experiments pin-on-plate experiments total joint replacement total replacement synovial joints tribological characteristics ultrahigh molecular weight polyethylene wear SYNOVIAL JOINTS are remarkable...
Book Chapter

By Steven Lampman
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... Abstract Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design...
Book Chapter

By Saurabh Gupta
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... Abstract One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its...
Image
Published: 01 January 2006
Fig. 14 Macroscopic features characteristic of fracture surfaces of implants that have failed by fatigue. (a) 316L implant showing beach marks. (b) Commercially pure titanium implant showing chevron marks More
Image
Published: 01 January 2003
Fig. 3 Concentration profiles for cobalt, aluminum, and boron implants in iron approximated using methods described in Ref 4 . Energy: 50 keV. Dose: 10 71 ion/cm 2 (6.45 × 10 71 ion/in. 2 ) More
Image
Published: 01 June 2012
Fig. 14 Macroscopic features characteristic of fracture surfaces of implants that have failed by fatigue. (a) 316L implant showing beach marks. (b) Commercially pure titanium implant showing chevron marks More
Image
Published: 01 June 2012
Fig. 5 (a) and (b) Tantalum foam revision hip replacement implants. Note the complex shapes that can be formed. More
Image
Published: 30 June 2023
Fig. 14 Various additively manufactured implants used in cranio-maxillofacial reconstructions, manufactured with a titanium alloy using selective laser sintering, by DePuy Synthes. Source: Ref 169 More
Image
Published: 12 September 2022
Fig. 33 Conceptual design to fabricate complex-shaped implants with tailored and functionally graded porosity. Source: Ref 189 More
Image
Published: 12 September 2022
Fig. 2 Various bone-related implants expected to be fabricated by metal three-dimensional additive manufacturing. Some photos were provided by Teijin Nakashima Medical Co., Ltd., Japan, and Kyocera Co., Ltd., Japan. More
Image
Published: 12 September 2022
Fig. 7 (a) Appearance of porous cylindrical Ti-6Al-4V implants fabricated by electron beam powder-bed fusion. Regeneration of a 10 mm (0.4 in.) bone defect created in a rabbit ulna (b) with and (c) without the cylindrical implant for 24 weeks. (d) Regenerated bone in the pores that form More
Book Chapter

By James K. Hirvonen, Bruce D. Sartwell
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001292
EISBN: 978-1-62708-170-2
... Abstract Ion implantation involves the bombardment of a solid material with medium-to-high-energy ionized atoms and offers the ability to alloy virtually any elemental species into the near-surface region of any substrate. This article describes the fundamentals of the ion implantation process...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... Abstract This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article...
Book Chapter

By Nadim James Hallab
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005666
EISBN: 978-1-62708-198-6
... Abstract Implant debris is known to cause local inflammation, local osteolysis, and, in some cases, local and systemic hypersensitivity. The debris can be stainless steel, cobalt alloy, and titanium alloy, and soluble debris obtained due to wear from all orthopedic implants. This article...
Book Chapter

By Don Gibbons
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... Abstract This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
.... A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation. biocompatibility biomaterials cardiac pacemakers cardiovascular applications ceramics...