Skip Nav Destination
Close Modal
By
ASM Committee on Cold-Finished Bars, K.M. Shupe, Richard B. Smith, Steve Slavonic, B.F. Leighton ...
Search Results for
imperfections
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 488 Search Results for
imperfections
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 25 Typical imperfections observable using optical microscopy. (a) Shrinkage porosity in an aluminum alloy 5052 ingot. Note angularity. 50×. (b) Coarse primary CrAl 7 crystal in aluminum alloy 7075 ingot. 100×. (c) Oxide stringer inclusion in a rolled aluminum alloy 1100 sheet. 250×. All
More
Image
Published: 01 January 2006
Fig. 9 Typical imperfections in flame/arc spray coatings. (a) Thin area in coating. (b) Imbedded blasting grit. (c) Void extending to substrate
More
Image
Published: 30 August 2021
Fig. 12 Surface imperfections caused by (a) poor shot peening conditions that resulted in deep imperfections compared with (b) normal peening conditions
More
Image
Published: 31 October 2011
Fig. 21 Imperfection sensitivity for 310 × 610 mm (12 × 24 in.) plate. Source: Ref 15
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... Abstract This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... Abstract This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001013
EISBN: 978-1-62708-161-0
... they are made. Although most steel plate is used in the hot-finished condition, some applications require one or more heat treating steps to mitigate imperfections and/or improve relevant qualities. The article discusses these interconnected factors as well as their impact on mechanical properties and critical...
Abstract
The production and use of steel plate is aided by a system of standard designations and associated specifications defining composition, property, and performance ranges. This article contains an extensive amount of information on the designations and grades of plate products and how they are made. Although most steel plate is used in the hot-finished condition, some applications require one or more heat treating steps to mitigate imperfections and/or improve relevant qualities. The article discusses these interconnected factors as well as their impact on mechanical properties and critical fabrication issues, including formability, machinability, and weldability.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001014
EISBN: 978-1-62708-161-0
... surface imperfections with varying degrees of severity. Seams, laps, and slivers are probably the most common defects in hot-rolled bars and shapes. Another condition that could be considered a surface defect is decarburization. Hot-rolled steel bars and shapes can be produced to chemical composition...
Abstract
Hot-rolled steel bars and other hot-rolled steel shapes are produced from ingots, blooms, or billets converted from ingots or from strand cast blooms or billets and comprise a variety of sizes and cross sections. Most carbon steel and alloy steel hot-rolled bars and shapes contain surface imperfections with varying degrees of severity. Seams, laps, and slivers are probably the most common defects in hot-rolled bars and shapes. Another condition that could be considered a surface defect is decarburization. Hot-rolled steel bars and shapes can be produced to chemical composition ranges or limits, mechanical property requirements, or both. Hot-rolled carbon steel bars are produced to two primary quality levels: merchant quality and special quality. Merchant quality is the least restrictive descriptor for hot-rolled carbon steel bars. Special quality bars are employed when end use, method of fabrication, or subsequent processing treatment requires characteristics not available in merchant quality bars.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001015
EISBN: 978-1-62708-161-0
... composition, and relative freedom from detrimental surface imperfections. Cold drawing significantly increases machinability, tensile and yield strengths of steel bars. Two special die-drawing processes have been developed to give improved properties over those offered by standard drawing practices...
Abstract
Cold-finished steel bars are carbon and alloy steel bar products (round, square, hexagonal, flat, or special shapes) that are produced by cold finishing previous hot-wrought bars. by means of cold drawing, cold forming, turning, grinding, or polishing (singly or in combination) to yield straight lengths or coils that are uniform throughout their length. Cold-finished bars fall into five classifications: cold-drawn bars; turned and polished bars; cold-drawn, ground, and polished bars; turned, ground, and polished bars; cold-drawn, turned, ground, and polished bars. Different size tolerances are applicable to cold-finished products, depending on shape, carbon content, and heat treatment. When used to identify cold-finished steel bars, the various quality descriptors are indicative of many characteristics, such as degree of internal soundness, relative uniformity of chemical composition, and relative freedom from detrimental surface imperfections. Cold drawing significantly increases machinability, tensile and yield strengths of steel bars. Two special die-drawing processes have been developed to give improved properties over those offered by standard drawing practices. These processes are cold drawing using heavier-than-normal drafts, followed by stress relieving; and drawing at elevated temperatures.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001016
EISBN: 978-1-62708-161-0
... for the manufacture of carbon steel wire is produced with manufacturing controls and inspection procedures intended to ensure the degree of soundness and freedom from injurious surface imperfections necessary for specific applications. This article also describes the various quality descriptors applicable to the rods...
Abstract
Wire rod is a semifinished product rolled from billet on a rod mill and is used primarily for the manufacture of wire. Steel wire rod is usually cold drawn into wire suitable for further drawing; for cold rolling, cold heading, cold upsetting, cold extrusion, or cold forging; or for hot forging. The article explains these operations, along with the several recognized quality and commodity classifications applicable to steel wire rods. The heat treatments commonly applied to steel wire rod, either before or during processing into wire, include annealing, spheroidize annealing, patenting, and controlled cooling. When the end product must be heat treated, the heat treatment and mechanical properties should be clearly defined. Carbon steel rods are produced in various grades or compositions: low-carbon, medium-low-carbon, medium-high-carbon, and high-carbon steel wire rods. Rod for the manufacture of carbon steel wire is produced with manufacturing controls and inspection procedures intended to ensure the degree of soundness and freedom from injurious surface imperfections necessary for specific applications. This article also describes the various quality descriptors applicable to the rods as well as standard qualities and commodities available in alloy steel wire rod.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005628
EISBN: 978-1-62708-174-0
... Abstract This article presents the structural attributes and internal characteristics of spot welds as well as the commonly inspected imperfections in resistance welds. It describes the industrial requirements for weld quality. Commonly performed destructive evaluations, namely, manual testing...
Abstract
This article presents the structural attributes and internal characteristics of spot welds as well as the commonly inspected imperfections in resistance welds. It describes the industrial requirements for weld quality. Commonly performed destructive evaluations, namely, manual testing, quasi-static mechanical tests, dynamic mechanical tests, and metallographic examination, are reviewed. The article reviews weld-quality monitoring using various process signals and provides a discussion on the on-line and off-line nondestructive evaluation methods of spot weld quality.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed. butt joints flange...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... Abstract The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... Abstract The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003171
EISBN: 978-1-62708-199-3
... shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process. alloys casting gating...
Abstract
Solidification is a comprehensive process of transformation of the melt of metals and alloys into a solid piece, involving formation of dendrites, segregation which involves change in composition, zone formation in final structure of the casting, and microporosity formation during shrinkage. This article describes the imperfections in the solidification process including porosity, inclusions, oxide films, secondary phases, hot tears, and metal penetration. It talks about the purpose of the gating system and the risering system in the casting process.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
..., bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts. brittle fracture crack nucleation crack...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... Abstract X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
1