Skip Nav Destination
Close Modal
Search Results for
impact wear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1114 Search Results for
impact wear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... Abstract Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006359
EISBN: 978-1-62708-192-4
... Abstract Impact wear can be defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another solid body. This article discusses the volume (or mass) removal of material either at or under engineering contact stress levels...
Abstract
Impact wear can be defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another solid body. This article discusses the volume (or mass) removal of material either at or under engineering contact stress levels and outlines a rational, semi-empirical impact wear theory. It illustrates a linear wear mechanism that occurs in print heads and repetitive impacts that take place in metallic machine contacts. The article concludes with information on plotting a wear curve for an originally plane, massive carbon steel machine platen subjected to repetitive compound impact by a hard, nonwearing spherical-ended steel alloy component.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... Abstract This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Image
Published: 31 December 2017
Fig. 2 Impact wear testing apparatuses. (a) Ballistic impact wear tester with three projectile bays located 120° apart. (b) Pivotal hammering tester, where three hammers impact a polymer sheet
More
Image
Published: 01 January 2002
Fig. 1 Diagram of impact wear modes. (a) normal impact; (b) compound impact (with sliding); and (c) compound impact (tangential contact). v , velocity
More
Image
Published: 31 December 2017
Fig. 7 Compound impact wear of carbon-steel projectiles tested in ballistic impact wear apparatus. Projectiles 8 are carbon steel, HRC = 20, V8 (δ ≃ 0.5 μm, or 20 (μin.), m = 1.27 g (0.045 oz), R = 140 mm (5.5 in.), V = 1.7 m/s (68 in./s); target disk is alloy steel 4140, HRC = 40 to 45
More
Image
Published: 15 January 2021
Fig. 15 Results of lubricated compound-impact wear experiments. V = impact velocity and v = sliding velocity; x: v = 0 m/s (0 ft/s); ●: = 0.25 m/s (0.8 ft/s); □ : v = 1.27 m/s (4.2 ft/s); ▴: v = 3.81 m/s (12.5 ft/s). Source: Ref 4
More
Image
Published: 01 August 2013
Fig. 33 Impact wear test apparatus. 1, sample; 2, steel ball; 3, ball holder; 4, base (the sample is not clamped to the base, not shown in the diagram); 5, vertical guide for the ball holder; 6, horizontal bar (defines the drop height); 7, magnetic steel block; 8, permanent magnet (attached
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 13 Results of lubricated compound impact wear experiments ( Ref 29 ). ( V is impact velocity and v = sliding velocity; ×: v = 0 m/s; •: v = 0.25 m/s; □: v = 1.27 m/s; ▲: v = 3.81 m/s)
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 29 Model predictions for valve recession caused by impact wear. Line represents model prediction; data points indicate bench test results.
More
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Fig. 13 Solution for impact wear in terms of nondimensional curvature parameters with initial conditions of N 0 = 1, ρ 0 = −0.01 or λ 0 = 0.99
More
Image
Published: 31 December 2017
Fig. 14 Impact wear of platen by hard projectile; analytical prediction based on engineering data of example
More
Image
Published: 15 January 2021
Fig. 1 Schematic diagram of impact wear modes resulting from bodies variously moving with velocity, V . (a) Normal impact. (b) Compound impact (with motion of both bodies causing sliding on impact). (c) Compound impact (with tangential contact causing sliding on impact). (d) Normal impact
More
Image
Published: 15 January 2021
Image
Published: 15 January 2021
Image
Published: 15 January 2021
1