Skip Nav Destination
Close Modal
Search Results for
image conversion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 352 Search Results for
image conversion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006448
EISBN: 978-1-62708-190-0
...: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent intensifying...
Abstract
Radiography is the process or technique of producing images of a solid material on a paper/photographic film or on a fluorescent screen by means of radiation particles or electromagnetic waves of short wavelength. This article reviews the general characteristics and safety principles associated with radiography. There are two main aspects of safety: monitoring radiation dosage and protecting personnel. The article summarizes the major factors involved in both and discusses the operating characteristics of X-ray tubes. It describes the various methods of controlling scattered radiation: use of lead screens; protection against backscatter and scatter from external objects; and use of masks, diaphragms, collimators, and filtration. The article concludes with a discussion on image conversion media, including recording media, lead screens, lead oxide screens, and fluorescent intensifying screens.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003238
EISBN: 978-1-62708-199-3
... of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many...
Abstract
Radiography is a nondestructive-inspection method that is based on the differential absorption of penetrating radiation by the part or test piece (object) being inspected. This article discusses the fundamentals and general applications of radiography, and describes the sources of radiation in radiographic inspection, including X-rays and gamma rays. It deals with the characteristics that differentiate neutron radiography from X-ray or gamma-ray radiography. The geometric principles of shadow formation, image conversion, variation of attenuation with test-piece thickness, and many other factors that govern the exposure and processing of a neutron radiograph are similar to those for radiography using X-rays or gamma rays.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006459
EISBN: 978-1-62708-190-0
... of image conversion techniques allow the viewing of radiographic images while the testpiece is being irradiated and moved with respect to the radiation source and the radiation detector. Real-time radiography is a technique in which the x-rays cause fluorescence of a sensor, and that image is visually...
Abstract
Digital radiography is a technique that uses digital detector arrays (linear or area) to capture an X-ray photonic signal and convert it to an electronic signal for display on a computer. This article begins with an overview of real-time radiography and provides a schematic illustration of a typical radioscopic system using an X-ray image intensifier. It discusses the advantages and limitations of real-time radiography. Computed radiography (CR) is one of the radiography techniques that utilizes a reusable detector comprised of photostimuable luminescence (PSL) storage phosphor. The article provides a schematic illustration of a typical storage phosphor imaging plate. It concludes with a discussion on the benefits of digital radiography.
Image
Published: 30 November 2018
Fig. 7 Transmission electron microscopy (TEM) image of a vinyl phosphonic acid conversion-coated aluminum alloy enhanced with a polymer modifier (acrylic acid). The initial thickness of the conversion coating, without the modifier, was reported to be the same thickness as the passive layer
More
Image
Published: 15 December 2019
Fig. 13 Micro x-ray diffraction (XRD) data from the backside of the imager substrate. Inset is the original two-dimensional (2-D) pattern. The X - Y plot is a result of integration of the 2-D pattern and conversion to a traditional one-dimensional XRD pattern. Reprinted with permission from
More
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006455
EISBN: 978-1-62708-190-0
... on the image conversion medium depends mainly on the absorption characteristics of the testpiece. Ordinarily, only the umbral region of a radiograph is of interest because it is only in this region that internal features of the testpiece are revealed. When a section of the testpiece contains...
Abstract
Film radiography requires the development of the exposed film so that the latent image becomes visible for viewing. It describes the general characteristics of film, including speed, gradient, and graininess, and the factors affecting film selection and exposure time. The article discusses the three major inspection techniques for tubular sections, namely, the double-wall, double-image technique; the double-wall, single-image technique; and the single-wall, single-image technique. It illustrates the arrangements of penetrameters and identification markers for the radiography of plates, cylinders, and flanges. The article discusses various control methods, including the use of lead screens; protection against backscatter and scatter from external objects; and the use of masks, diaphragms, collimators, and filtration. The radiographic appearance of specific types of flaws is also discussed. The article concludes with a discussion on two methods of radiographic film processing: manual and automatic processing.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006453
EISBN: 978-1-62708-190-0
... radiation). In practice, optimizing and matching these conversions is essential to TNDE performance. Signal-Generation Mechanisms In most cases, relative, rather than absolute, temperature is measured. Response to stimulation must be viewed over an interval of time. A single time-slice image...
Abstract
Thermal nondestructive evaluation (TNDE) is an indirect process, so that regardless of the form of energy used to excite the sample, interaction with the internal structure of a part occurs through the process of heat conduction. This article discusses the steady-state configuration and selective excitation configuration of the signal-generation mechanisms in thermal nondestructive evaluation methods. The three widely used approaches to TNDE are surface-excited thermography, vibrothermography, and thermoelastic stress analysis. The article provides information on the common features, characteristics, and limitations of these approaches.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
... detection. This media conversion occurred much earlier in scanning instruments (STEM and SEM). Initially, photographic film was used to record images in STEM and SEM instruments, but this option is now completely obsolete. Digital recording devices used in modern TEM and STEM instruments are introduced...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003679
EISBN: 978-1-62708-182-5
... Abstract Chromate conversion coatings (CCCs) are primarily used to improve adhesion of subsequently applied organic coatings or to impart corrosion resistance during atmospheric exposure. This article describes the factors that affect the formation of CCCs. It provides information...
Abstract
Chromate conversion coatings (CCCs) are primarily used to improve adhesion of subsequently applied organic coatings or to impart corrosion resistance during atmospheric exposure. This article describes the factors that affect the formation of CCCs. It provides information on the processing sequence, morphology, composition, and properties of CCCs. The article discusses the electrochemical impedance spectroscopy approach used for evaluating conversion coatings. The test methods for various CCCs properties are also reviewed. The article examines the various coatings associated with chromate-free conversion. These include: titanium and zirconium fluorocomplexes; cerium-base, manganese-base, cobalt-base, and molybdate-base conversion coatings; hydrotalcite coatings; and organic coatings.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003272
EISBN: 978-1-62708-176-4
... discusses the most common hardness conversions and the applications of MHT. microindentation hardness testing specimen preparation Vickers hardness test Knoop hardness test microindentation hardness testing equipment repeatability reproducibility IN MICROINDENTATION HARDNESS TESTING (MHT...
Abstract
This article provides a discussion on the equipment used and specimen preparation for microindentation hardness testing (MHT) such as the Vickers hardness test and the Knoop hardness test. It describes the important test considerations to be considered during MHT. The article also discusses the most common hardness conversions and the applications of MHT.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006444
EISBN: 978-1-62708-190-0
... of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera. vibrothermography delaminations...
Abstract
Vibrothermography, also known as sonic thermography, sonic infrared (IR), thermosonics, and vibroacoustic thermography, is a nondestructive evaluation (NDE) technique for finding cracks and delaminations through vibration-induced heating. This article describes the four parts of the vibrothermography process: vibration of the specimen by a transducer; conversion of vibrational energy into heat by a crack, delamination, and other contacting surfaces; conduction of the heat to an external surface; and infrared detection of the heat with a thermal camera.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... the digitized image. Image sharpening is required because the conversion from an analog signal to a digitized signal does not produce sharp edges. Delineation, the most commonly used image enhancement function, converts digitized signals to a square-wave function, thus producing sharper images. Feature...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001833
EISBN: 978-1-62708-181-8
... the fracture is related to the components of the part. This should be followed by careful examination of the fracture by studying its image on the ground-glass back of the camera or through the viewfinder. The examination should begin with the use of direct lighting and should proceed by using various angles...
Abstract
This article discusses the preparation of photomacrographs of fracture surfaces. It provides useful information on the equipment used, such as view cameras, 35-mm single-lens-reflex cameras, and stereomicroscopes. The article describes the role of lenses, focusing, camera magnification, and selection of lens aperture in a microscopic system. It illustrates the lighting techniques employed in photography and highlights the use of different films. The article concludes with a list of auxiliary equipment used in fracture surface photography.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
... consist of a power supply, a pulser circuit, a search unit, a receiver-amplifier circuit, high-integrity analog-to-digital data conversion, and now in many cases, a touch screen and display, all coordinated using an electronic clock or calibrator. Advances in computer technology have extended the data...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003760
EISBN: 978-1-62708-177-1
... Abstract Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial...
Abstract
Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial sectioning, focused ion beam tomography, atom probe tomography, and X-ray microtomography. Nine case studies are presented that represent the work of the various research groups currently working on 3D microscopy using serial sectioning and illustrate the variants of the basic experimental techniques. The article also discusses the techniques for reconstruction and visualization of 3D microstructures with advanced computer software and hardware.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003240
EISBN: 978-1-62708-199-3
... fringe field. If, conversely, the application involves the strain analysis of an object subjected to a specific type of stress, the image can be analyzed to yield a highly quantitative point-by-point map of the resulting surface displacements. It permits comparison of the responses of an object to two...
Abstract
Holography is basically a two-step process for creating a whole three dimensional image of a diffusely reflecting object having some arbitrary shape. This article discusses the advantages, disadvantages and applications of using the optical holography method in nondestructive evaluation. It also discusses the types of acoustical holography, including liquid-surface acoustical holography and scanning acoustical holography. The article concludes by comparing liquid-surface and scanning systems.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
... Abstract Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006924
EISBN: 978-1-62708-395-9
...Glossary of characteristic cure parameters Table 1 Glossary of characteristic cure parameters Symbol Definition α Chemical conversion (e.g., of epoxide or isocyanate groups), degree of cure α gel α at the gel point t gel Time to gelation, gel time t vit Time...
Abstract
This article discusses the most common thermal analysis methods for thermosetting resins. These include differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, and dynamic mechanical analysis. The article also discusses the characterization of uncured thermosetting resins as well as the curing process. Then, the techniques to characterize the physical properties of cured thermosets and composites are presented. Several examples of stress-strain curves are shown for thermosets and thermoplastic polymers.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006452
EISBN: 978-1-62708-190-0
... applications. It discusses the mathematics behind classical beamforming, full matrix capture, and total focusing methods of imaging. The article shows how ultrasonic array data can be simulated by direct numerical methods (most commonly using finite-element methods), analytical methods, or hybrid methods...
Abstract
Ultrasound is an ideal modality for nondestructive evaluation (NDE) because it enables the interior of objects to be assessed without the safety and access issues associated with radiography. This article summarizes the history of array usage in NDE and its relationship to medical applications. It discusses the mathematics behind classical beamforming, full matrix capture, and total focusing methods of imaging. The article shows how ultrasonic array data can be simulated by direct numerical methods (most commonly using finite-element methods), analytical methods, or hybrid methods. It also considers various methods of comparing the performance of arrays and imaging algorithms. The article provides a comparison of various advanced and nonlinear imaging algorithm and looks at some practical industrial applications of arrays. It concludes with some future perspectives for arrays in NDE.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... through analog-to-digital conversion (A/D), creating a digital file that is stored in the computer. Digitization is a fundamental step because it defines the quality of the digital image and therefore the quality of all further processing and analysis. There are basically three different image...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
1