Skip Nav Destination
Close Modal
Search Results for
image acquisition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 164
Search Results for image acquisition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 16 Image-acquisition interface. (a) A dynamic image-acquisition window showing a live image. (b) The exposure controls and the image histogram
More
Image
Published: 01 December 2004
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003757
EISBN: 978-1-62708-177-1
... Abstract This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied...
Abstract
This article reviews the main theoretical and practical aspects of sequence normally followed in digital image-acquisition, processing, analysis, and output for material characterization. It discusses the main methods of digital imaging, image processing, and analysis, as applied to microscopy of materials. The article describes the basic concepts of sampling and resolution and quantization of light microscopy, scanning electron microscopy, and transmission electron microscopy. It discusses the acquisition of a digital image that accurately represents the sample under observation and output of the image to a printer. The methods used to enhance the digital image and to extract quantitative information are also described. Different types of image segmentation, namely, adaptive segmentation and contour-based segmentation, are reviewed. The article also presents case studies on the application of image processing and analysis to materials characterization.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003758
EISBN: 978-1-62708-177-1
... concentrates on the basic properties of digital measurements that are the core of quantitative image analysis. It provides a brief description of the specimen and apparatus preparation as well as the image acquisition. The article explains how to evaluate stereological parameters and provides the general rules...
Abstract
This article reviews the essential parts of the complex process of quantitative image analysis to assist automatic image analysis in laboratories. It describes the basic difference between the bias of classical manual stereological analysis and quantitative image analysis. The article concentrates on the basic properties of digital measurements that are the core of quantitative image analysis. It provides a brief description of the specimen and apparatus preparation as well as the image acquisition. The article explains how to evaluate stereological parameters and provides the general rules and guidelines for optimization of image processing algorithms from the viewpoint of shape quantification. It concludes with examples that demonstrate the usefulness of automatic image analysis in comparison to manual methods.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006439
EISBN: 978-1-62708-190-0
..., and quality control applications. This article presents a variety of machine vision functions for different purposes and provides a comparison of machine and human vision capabilities in a table. It discusses the processes of a machine vision system: image acquisition, image preprocessing, image analysis...
Abstract
Machine vision, also referred to as computer vision or intelligent vision, is a means of simulating the image recognition and analysis capabilities of the human eye and brain system with digital techniques. The machine vision functionality is extremely useful in inspection, supervision, and quality control applications. This article presents a variety of machine vision functions for different purposes and provides a comparison of machine and human vision capabilities in a table. It discusses the processes of a machine vision system: image acquisition, image preprocessing, image analysis, and image interpretation. The article provides information on the uses of machine vision systems in three categories of manufacturing applications: visual inspection, identification of parts, and guidance and control applications.
Image
in Review of Ultrasonic Testing for Metallic Additively Manufactured Parts
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 10 Principle of plane wave imaging data acquisition. (a) All elements pulsing to create a plane wave in the material. (b) All elements receiving signals in parallel and without delay
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
... Abstract Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin...
Abstract
Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin specimen. This article discusses fundamentals of the technique, especially for solving materials problems. Background information is provided to help understand basic operations and principles, including instrumentation, the physics of signal generation and detection, image formation, electron diffraction, and spectrometry techniques with data analysis.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
... Abstract Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information...
Abstract
Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information from small regions of the specimen. This article illustrates the effectiveness of the technique in solving materials problems. The first section of the article provides information on analytical electron microscope (AEM) and its basic operational characteristics as well as on electron optics, electron beam/specimen interactions and the generation of a signal, signal detectors, electron diffraction, imaging, x-ray microanalysis, electron energy loss spectroscopy, and sample preparation. The second section consists of 12 examples, each illustrating a specific type of materials problem that can be solved, at least in part, with AEM.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006981
EISBN: 978-1-62708-439-0
... the measurement instrument. The data used and generated at the concept design stage are mainly unstructured data, such as text, images, and point cloud files. Data acquisition relies heavily on software exporting functions and manual data ingestion. Detailed Design Three-dimensional (3D) CAD models...
Abstract
This article surveys common additive manufacturing (AM) data-acquisition methods, covering preprocess materials characterization in the lab, machine calibration in the field, in-process monitoring during a build, and the postprocess part inspections and tests. The focus is to identify acquisition-related metadata for AM data sets to improve data usability and reusability. Also included in the article are exemplar metadata definitions for a data set acquired from light-scattering-based particle size analysis.
Image
Published: 15 December 2019
Fig. 39 (a) Ion beam and (b) electron beam images of a plasma focused ion beam serial-sectioning tomography acquisition on an aluminum alloy showing key geometric features, including the cross-sectional face, redeposition trench, fiducial marks, and protective pad on the top surface. In (b
More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005504
EISBN: 978-1-62708-197-9
..., steady improvements in automating material removal, digital image acquisition, and visualization of 3-D reconstructions using advanced computer software and hardware ( Ref 4 , 13 , 15 , 16 , 36 , 37 , 38 , 39 ) have made 3-D analysis techniques more accessible to materials researchers. However...
Abstract
This article reviews the characterization methods for producing 3-D microstructural data sets. The methods include serial sectioning by mechanical material removal method and focused ion beam tomography method. The article describes how these data sets are used in realistic 3-D simulations of microstructural evolution during materials processing and materials response. It also explains how the 3-D experimental data are actually input and used in the simulations using phase-field modeling and finite-element modeling.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... will occur. This effect can be observed by drifting of the image or sudden brightening of the image. While this can be annoying for image acquisition, it will not prevent obtaining an EDS spectrum. However, the buildup of charge will decelerate the incident electron beam, causing a variation in x-ray...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Image
in Additive Manufacturing Data and Metadata Acquisition—General Practice
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 6 Schematic of synchronized coaxial melt pool (MP) imaging. A/D, analog/digital; DAQ, data acquisition; DMA, direct memory access; PC, personal computer
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... are available, they are significantly more expensive. Image analysis consists of six basic steps ( Ref 2 ): Image acquisition for microstructural analysis is accomplished with a microscope and a video camera. Image enhancement is required to correct for nonuniform illumination and to sharpen...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006456
EISBN: 978-1-62708-190-0
... Abstract Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison...
Abstract
Computed tomography (CT) is an imaging technique that generates a three-dimensional (3-D) volumetric image of a test piece. This article illustrates the basic principles of CT and provides information on the types, applications, and capabilities of CT systems. A comparison of performance characteristics for film radiography, real-time radiography, and X-ray computed tomography is presented in a table. A functional block diagram of a typical computed tomography system is provided. The article discusses CT scanning geometry that is used to acquire the necessary transmission data. It also provides information on digital radiography, image processing and analysis, dual-energy imaging, and partial angle imaging, of a CT system.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
... of image acquisition and 3D medical model printing has greatly evolved to allow for rapid manufacture of complex and individualized anatomical models. Today (2021), pathologic conditions of the head and neck remain the most common application of medical modeling ( Ref 6 ). This article is divided...
Abstract
This article provides highlights of the general process and workflow of creating a 3D-printed model from a medical image and discusses the applications of additively manufactured materials. It provides a brief background on Food and Drug Administration (FDA) classification and regulation of medical devices, with an emphasis on 3D-printed devices. Then, the article discusses two broad applications of 3D printing in craniofacial surgery: surgery and education. Next, it discusses, with respect to surgical applications, preoperative planning, use in the operating room, surgical guides, and implants. The article includes sections on education that focus on the use of 3D-printed surgical simulators and other tools to teach medical students and residents. It briefly touches on the FDA regulations associated with the respective application of 3D printing in medicine. Lastly, the article briefly discusses the state of medical billing and reimbursement for this service.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006896
EISBN: 978-1-62708-392-8
... and Considerations To create 3D-printed, patient-specific anatomical models at the POC, there are several steps required ( Fig. 3 ), including: Identification of a medical/surgical need Image acquisition Image segmentation Computer-aided design Build preparation 3D printing...
Abstract
Bridging the gap between education and medical practice, centralized hospital-based 3D printing, or what is termed point-of-care (POC) manufacturing, has been rapidly growing in the United States as well as internationally. This article provides insights into the considerations and the current workflow of creating 3D-printed anatomical models at the POC. Case studies are introduced to show the complex range of anatomical models that can be produced while also exploring how patient care benefits. It describes the advanced form of communication in medicine. The advantages as well as pitfalls of using the patient-specific 3D-printed models at the POC are addressed, demonstrating the fundamental knowledge needed to create 3D-printed anatomical models through POC manufacturing.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009152
EISBN: 978-1-62708-186-3
... acquisition Image processing and analysis Interpretation Fig. 20 Sheet metal part with a grid of dots after forming. Source: Ref 23 In the image acquisition stage, the part to be processed is illuminated by a lighting system that projects a fringe pattern on the part to be inspected...
Abstract
This article discusses the installation of the most commonly used force-monitoring devices, namely, load cells and piezoelectric force sensors. It describes the purpose and operation of commonly used displacement sensors, such as linear variable differential transformers, proximity sensors, photoelectric sensors, and ultrasonic sensors. The article provides information on the sensors used for detecting tool breakages and flaws in parts, the measurement of material flow during sheet metal forming, and lubrication. It also describes the operating stages of machine vision systems used for automated quality-control purposes. The theory of eddy-current-based material properties evaluation is also discussed.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006464
EISBN: 978-1-62708-190-0
... as an unwanted source of IR radiation if it is in the field of view during image acquisition. Contact Sources Sources such as heat blankets, heating pads, or platens may be brought into direct contact with the sample to raise the sample temperature. The source is usually a nichrome wire array embedded...
Abstract
For most nondestructive evaluation (NDE) applications, the term thermography actually refers to surface-excited thermography (SET) that involves thermal mapping of surface temperature as heat flows from, to, or through a test object in response to excitation applied to the sample surface. This article discusses the strategies for implementing thermography for NDE, including the steady-state/whole-body approach and transient heat conduction. It describes the most common signal-processing methods, such as thermographic signal reconstruction, lock-in thermography, and pulsed-phase thermography. The article concludes with a discussion on the use of thermal methods for thermal diffusivity measurement and characterization of multilayer structures.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003760
EISBN: 978-1-62708-177-1
..., digital image acquisition, and visualization of 3D reconstructions using advanced computer software and hardware have made 3D analysis techniques more accessible to materials researchers. Even with the relative slowness of manual serial sectioning, at 20 to 30 min/section on average and approximately 100...
Abstract
Three-dimensional microscopy can be used to reveal the shape, distribution, and connectivity of three-dimensional (3D) features that lie buried within an opaque material. This article discusses several experimental techniques that can be used to generate 3D images. These include serial sectioning, focused ion beam tomography, atom probe tomography, and X-ray microtomography. Nine case studies are presented that represent the work of the various research groups currently working on 3D microscopy using serial sectioning and illustrate the variants of the basic experimental techniques. The article also discusses the techniques for reconstruction and visualization of 3D microstructures with advanced computer software and hardware.
1