Skip Nav Destination
Close Modal
Search Results for
illumination methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 210 Search Results for
illumination methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
..., measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
..., or epi) microscopy is the most common technique for examination of composite materials, but other illumination and contrast methods are often required due to the lack of reflectivity of some materials. Different composites present different types of resoluble features, depending on the reflectivity...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 18 Micrographs of a composite cross section showing the differences in contrast methods. The composite morphology and microcracks appear significantly different using these epi-illumination modes. One transmitted-light method is shown for reference. (a) Bright-field illumination, 25
More
Image
in Metallography and Microstructures of Zirconium, Hafnium, and Their Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 3 Zircaloy 4 as-cast ingot. (a) Center section. Attack polished, heat tinted, etchant procedure No. 6, and viewed with differential interference contrast illumination. (b) Midthickness. Attack polished, heat tinted, and viewed with differential interference contrast illumination
More
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001833
EISBN: 978-1-62708-181-8
... of the markings. 7× Figure 11 gives further examples of the effect of different methods of illumination on the appearance of a fracture surface. For this particular surface, ring illumination ( Fig. 11a ) is poorest and vertical illumination ( Fig. 11d ) provides the best overall detail, primarily...
Abstract
This article discusses the preparation of photomacrographs of fracture surfaces. It provides useful information on the equipment used, such as view cameras, 35-mm single-lens-reflex cameras, and stereomicroscopes. The article describes the role of lenses, focusing, camera magnification, and selection of lens aperture in a microscopic system. It illustrates the lighting techniques employed in photography and highlights the use of different films. The article concludes with a list of auxiliary equipment used in fracture surface photography.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003782
EISBN: 978-1-62708-177-1
... temperatures have exceeded the transformation temperature. This article examines the methods for metallographic preparation and shows representative microstructures of zirconium, zirconium alloys, and hafnium. History of Zirconium Metallography Some of the early metallography performed and published...
Abstract
Zirconium, hafnium, and their alloys are reactive metals used in a variety of nuclear and chemical processing applications. This article describes various specimen preparation procedures for these materials, including sectioning, mounting, grinding, polishing, and etching. It reviews some examples of the microstructure and examination for zircaloy alloys, hafnium, zirconium, and bimetallic forms.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
... strength and modulus but differing in fiber shape. (a) Cylindrical carbon fiber shape. Bright-field illumination, 50× objective. (b) Irregular bean-shaped fibers. Bright-field illumination, 25× objective Many methods are used to manufacture fiber-reinforced composites, including hand lay-up...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
... ). This creates elliptical images of the fibers in which the angle of the fibers can be determined based on the aspect ratio of the fibers and simple geometry. This is an easy method to determine ply angles using bright-field illumination, but the fiber diameter must be accurately known and, for high precision...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
... metallographs with assorted illumination modes, light sources, microhardness attachments, hot stages, and so on. An example of an inverted metallograph is shown in Fig. 4 . Fig. 4 Inverted metallograph. Features include selection of incident light, various contrasting methods, camera, and microhardness...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... and their relationships to traditional stereological analysis ( Ref 1 ). Prior to the time when computers and image analysis software became accessible, feature counting methods were used (e.g., a grid is used to frame the object, or a line of known length is drawn on a photograph and the number of features...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Image
in Analysis of the Effects of Lightning Strikes on Polymeric Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 12 Interply and intraply arcing events that occurred in a carbon fiber composite after being subjected to a lab-induced lightning strike. Comparison of different contrast methods: bright-field illumination and epi-fluorescence, 390–440 nm excitation, 25× objective
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003230
EISBN: 978-1-62708-199-3
... discontinuities. Visual inspection is the most widely used method for detecting and examining surface cracks. Visual inspection methods range from examination with the naked eye to the use of interference microscopes to measure the depth of scratches in the finish of finely polished and lapped surfaces...
Abstract
Visual inspection is a nondestructive testing technique that provides a means to detect and examine a variety of surface flaws, such as corrosion, contamination, surface finish, and surface discontinuities. This article discusses the equipment used to aid visual inspection, including borescopes (rigid and flexible), optical sensors, and magnifying systems. The article discusses the special features of borescopes, the factors that influence the choice of a flexible or rigid borescope for use in a specific application, and some of the image sensors used in visual inspection.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009078
EISBN: 978-1-62708-177-1
... illumination, 65 mm macrophotograph Some processing methods and lay-ups are more susceptible to air entrapment. Parts having tight radii and complex shapes are more apt to have voids located in the low-pressure areas. Likewise, tubular composite parts that have thick cross sections and high ply angles...
Abstract
Voids in fiber-reinforced composite materials are areas that are absent of the composite components: matrix (resin) and fibers. Voids have many causes but generally can be categorized as voids due to volatiles or as voids that result from entrapped air. This article describes the analysis of various types of voids. It reviews techniques for analysis of voids at ply-drops, voids due to high fiber packing, and voids that occur in honeycomb core composites. The final section of the article discusses void documentation through the use of nondestructive inspection techniques and density/specific gravity measurement methods.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006447
EISBN: 978-1-62708-190-0
... and Certification of NDT Personnel”). Basic Principles There are many definitions for VI, the shortest given by British Standards Institute’s standard BS EN 1330-10:2003, “Non-Destructive Testing. Terminology. Terms Used in Visual Testing,” as “visual testing method of nondestructive testing using...
Abstract
Visual inspection (VI) is the oldest inspection technique man has used as a quality-control tool to evaluate products, assess their final form in terms of fabrication accuracy and external features based on experience, and decide on their acceptance or rejection. This article discusses the basic principles of visual inspection in terms of direct visual examination and indirect visual examination as well as advantages and limitations of visual inspection. It reviews the factors affecting the effectiveness of VI as a nondestructive testing (NDT): lighting conditions of observation, condition of surface under inspection, physical state/condition of inspector, proper training of personnel and level of expertise, and knowledge of applicable standards. The article provides schematic illustrations of rigid borescopes, fiberscopes, and videoscopes. It concludes with a discussion on automated optical inspection systems.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009085
EISBN: 978-1-62708-177-1
... Interply and intraply arcing events that occurred in a carbon fiber composite after being subjected to a lab-induced lightning strike. Comparison of different contrast methods: bright-field illumination and epi-fluorescence, 390–440 nm excitation, 25× objective To protect a composite surface from...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... Abstract This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence. bright-field illumination composite materials dark-field illumination dyes epi-fluorescence microcrack...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
..., all of which result from the fracture process. The recording of this fracture surface information requires the failure analyst to use appropriate illumination techniques with suitable magnification to resolve and distinguish the fracture features present. The failure analysis process analyzes...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009094
EISBN: 978-1-62708-177-1
...-matrix composite materials, focuses on the microstructure and morphology of these unique materials. In the following articles, the authors explain the materials, equipment, and procedures of how to prepare composite samples, followed by the illumination and contrast techniques of optical microscopy...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003244
EISBN: 978-1-62708-199-3
... Abstract This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters...
Abstract
This article describes the methods and equipments involved in the preparation of specimens for examination by light optical microscopy, scanning electron microscopy, electron microprobe analysis for microindentation hardness testing, and for quantification of microstructural parameters, either manually or by the use of image analyzers. Preparation of metallographic specimens generally requires five major operations: sectioning, mounting, grinding, chemical polishing, and etching. The article provides information on the principles of technique selection in mechanical polishing, and describes the procedures, advantages, and disadvantages of electrolytic and chemical polishing. It also provides a detailed account of procedures, precautions, and composition for preparation and handling of etchants.
1