1-20 of 444 Search Results for

hydrogen sulfide testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... Abstract This article provides information on predesign surveys and the various testing procedures associated with wastewater treatment plants. These include soil testing, atmospheric testing, and hydrogen sulfide testing. The primary parameters that influence the production of sulfides within...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... small to reduce tension-test ductility, hydrogen-induced delayed fracture may occur. Although hydrogen embrittlement has been evaluated extensively, it takes on several forms. The various forms or manifestations of hydrogen embrittlement and the terminology associated with it can be very confusing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... steels with tensile strengths of 1240 MPa (180 ksi) or more. A few parts per million of hydrogen dissolved in steel can cause hairline cracking and loss of tensile ductility. Even when the quantity of gas in solution is too small to reduce tension-test ductility, hydrogen-induced delayed fracture may...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003611
EISBN: 978-1-62708-182-5
... the various forms of high-temperature gaseous corrosion, namely, high-temperature oxidation, sulfidation, carburization, corrosion by hydrogen, and hot corrosion. oxidizing gas corrosion liquid electrolyte high-temperature gaseous corrosion high-temperature oxidation sulfidation carburization...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004211
EISBN: 978-1-62708-184-9
... and nonferrous alloys used in petroleum refining and petrochemical applications. The article reviews the mechanical properties, fabricability, and corrosion resistance of refinery steels. It describes low- and high-temperature corrosion, hydrogen embrittlement, and cracking such as stress-corrosion, sulfide...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... Engineers (ASME), or American Society for Testing and Materials (ASTM) specification number; nominal composition; or trade name. These steels have also been assigned numbers in the Unified Numbering System. In addition, there are Military and Federal specifications covering many of these steels. Steel...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... soil as a function of iron sulfide present under anaerobic conditions in laboratory tests. SRB, sulfate-reducing bacteria Sparging test cells with air caused a short burst of very severe corrosion accompanied by the oxidation of some of the black iron sulfide in the soil around the steel coupons...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... surface indicates activity from a strong acid or acid salt, such as hydrochloric acid or ammonium chloride. General thinning indicates the activity of hydrogen sulfide on the coupon. Coupons are widely used to monitor inhibitor programs in, for example, water treatment or refinery overhead streams...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000609
EISBN: 978-1-62708-181-8
... in sulfide population on grain boundaries leads to an improvement in ductility. (D.P. Pope, University of Pennsylvania, and S.-H. Chen, Norton Christensen) Fig. 602 Fig. 603 Fig. 604 Fig. 605 Fig. 606, 607, 608, 609, 670 Effect of hydrogen environment on fracture...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... carbonate (by extensive bubble formation) and sulfide (by the odor of hydrogen sulfide or by its reaction with a color indicator such as lead acetate). Iron (II) and (III) can be detected in the resulting acid solution using standard ferricyanide and thiocyanate tests. Addition of a solution of oxalate...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004189
EISBN: 978-1-62708-184-9
... and Correlation of High Temperature Catalytic Reformer Corrosion Data,” NACE Technical Committee Report, Publication 58-2, National Association of Corrosion Engineers , 1957 44. Backensto E.B. and Sjoberg J.W. , “Iso-Corrosion Rate Curves for High Temperature Hydrogen-Hydrogen Sulfide...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006635
EISBN: 978-1-62708-213-6
...) is indicative of sulfur. Test for halogens: Acidify a 2 mL aliquot of the fusion solution by dropwise addition of 6 M nitric acid (verify acidification with blue litmus paper). Boil the solution gently for 2 to 3 min to expel any hydrogen sulfide or cyanide that may be present, because these may interfere...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003670
EISBN: 978-1-62708-182-5
... or physical conditions giving rise to the aggressive environment are produced by microorganisms as by- products of their energy-obtaining metabolism. This may involve the production of an aggressive chemical agent such as hydrogen sulfide (H 2 S) or acidity. Microorganisms may also consume chemical species...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
..., hydrogen sulfide, carbon dioxide, and ammonia can be very corrosive environments. Another cause of inadvertent general corrosion is improper chemical cleaning using uninhibited acids, excessive temperatures, or prolonged contact time. Water used to wash fire-side deposits where high-sulfur fuel oil...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
... that in several studies ( Ref 66 , 67 , 68 ), SRB were present on cathodically protected steels, but accelerated corrosion was not reported. Thermodynamic data with iron in a pH 7 electrolyte saturated with hydrogen sulfide was studied ( Ref 73 ). A potential of −1024 mV SCE was required to achieve cathodic...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
... and information on oxidation; sulfidation; hot corrosion of NiAl-, FeAl-, and TiAl-based intermetallics; and silicides are included. The article explores the thermodynamic consideration, ordering influencing kinetics, stress-cracking corrosion, and hydrogen embrittlement of aqueous corrosion. It also explains...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003702
EISBN: 978-1-62708-182-5
... is the testing of every component (including weld metal) of a heat exchanger fabricated from chromium-molybdenum steels for hot high-pressure hydrogen service to avoid possible catastrophic failure by hydrogen attack. The use of portable x-ray fluorescence analyzers for this type of quality-assurance testing...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004218
EISBN: 978-1-62708-184-9
... alloys ( Ref 10 ). Tests were performed at 760, 870, and 980 °C (1400, 1600, and 1800 °F) for 215 h in a gas mixture consisting of 5% hydrogen, 5% CO, 1% carbon dioxide (CO 2 ), 0.15% hydrogen sulfide (H 2 S), 0.1% H 2 O, and the balance argon. The cobalt-base alloys were found to be the best performers...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004210
EISBN: 978-1-62708-184-9
... (CO 2 ), hydrogen sulfide (H 2 S), polysulfides, organic acids, and elemental sulfur. In certain circumstances, natural gas reservoirs may also contain elemental mercury as an additional impurity with the result being additional concerns from the standpoint of corrosion (these are discussed...