1-20 of 945

Search Results for hydrogen damage

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
... Abstract Hydrogen damage is a form of environmentally assisted failure that results from the combined action of hydrogen and residual or applied tensile stress. This article classifies the various forms of hydrogen damage and summarizes the theories that seek to explain these types...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... Abstract Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types...
Image
Published: 01 January 2002
Fig. 19 Window fracture. Typically results from hydrogen damage in carbon or low-alloy steel boiler tubes More
Image
Published: 01 January 2002
Fig. 20 Hydrogen damage (dark area) in a carbon steel boiler tube. The tube cross section was macroetched with hot 50% hydrochloric acid. More
Image
Published: 01 January 2002
Fig. 22 Carbon steel boiler tube that ruptured due to hydrogen damage. More
Image
Published: 01 January 2002
Fig. 26 Cracks in naphtha desulfurization reactor attributed to hydrogen damage. (a) Note decarburized region adjacent to crack. 25×. (b) Higher-magnification view. 200× More
Image
Published: 30 August 2021
Fig. 99 Cracks in naphtha desulfurization reactor attributed to hydrogen damage. (a) Note decarburized region adjacent to crack. Original magnification: 25×. (b) Higher-magnification view. Original magnification: 200× More
Image
Published: 01 June 2024
Fig. 29 Hydrogen-damage failure in a carbon steel tube from the water wall of a boiler. (a) Macroscopic profile of the crack. (b) Secondary electron image of laboratory-created fracture near the inner surface. Original magnification: 1000×. Source: Ref 16 More
Image
Published: 01 January 2002
Fig. 8 Hydrogen-damaged refinery platformer line (carbon steel, 0.5% Mo). (a) Undamaged microstructure. (b) Decarburization region caused by hydrogen depleting the iron carbides. (c) Microfissuring at inclusions. (d) Hydrogen blister caused by methane gas formation. (a) and (b), nital etch. (c More
Image
Published: 01 June 2024
Fig. 30 Cross section near the through-wall crack for the hydrogen-damaged tube shown in Fig. 29 . (a) Lower-magnification image. As-polished. Original magnification: 16×. (b) Higher-magnification image. 2% nital etch. Original magnification: 1000× More
Image
Published: 01 January 1993
Fig. 10 Effect of hydrogen and stress on damage caused by HIC. As hydrogen increases, less stress is needed to cause damage by hydrogen-induced cracks. More
Image
Published: 30 August 2021
Fig. 13 Representative micrograph showing high-temperature hydrogen attack damage in the form of intergranular fissuring and decarburzation in carbon steel. Original magnification: 500×. Etched with 2% nital solution More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures...
Book Chapter

By Phillip Daniel
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004154
EISBN: 978-1-62708-184-9
...-accelerated corrosion, oxygen pitting, chelant corrosion, caustic corrosion, acid corrosion, organic corrosion, phosphate corrosion, hydrogen damage, and corrosion-assisted cracking. boilers corrosion caustic corrosion organic corrosion corrosion prevention corrosion control hydrogen damage flow...
Book Chapter

Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000621
EISBN: 978-1-62708-181-8
..., tension-overload fracture surface, ductile fracture, cone-shaped fracture surface, intergranular crack propagation, transgranular crack propagation, stress-corrosion cracking, hydrogen damage, and grain-boundary separation of these alloys. Fractographs are also provided for a forged aircraft main-landing...
Book Chapter

By Ronald W. Schutz
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for expanding...
Book Chapter

By Bruce Craig
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... with a predictable growth rate or, as is often the case, unpredictable catastrophic fracture. The subsection is divided into four articles (after this brief introduction). Each addresses a specific type of cracking or embrittlement phenomena: stress-corrosion cracking (SCC), hydrogen damage (frequently referred...
Image
Published: 01 January 2002
Fig. 18 Micrograph of an etched specimen from a carbon steel boiler tube. Decarburization and discontinuous intergranular cracking resulted from hydrogen damage. 250× More
Image
Published: 15 January 2021
Fig. 14 Longitudinal failure in thick-walled waterside tube resulting from hydrogen damage. The interior surface displays gouging adjacent to failure lip. Courtesy of Electric Power Research Institute More