Skip Nav Destination
Close Modal
Search Results for
hydroforming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 51 Search Results for
hydroforming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005124
EISBN: 978-1-62708-186-3
... Abstract This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process...
Abstract
This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process, and the Demarest process. The article provides a discussion on the procedures of these processes, as well as the presses and tools used. It describes the methods of hydraulic forming of thin metal parts, namely, hydraulic forming with diaphragm, hydraulic forming with gasket and pressure control, and hydrobuckling.
Image
Published: 01 January 2005
Fig. 16 Circumferential strain along an Al-6061 tube bulged by hydroforming. Comparison between predictions obtained using different yield functions and experimentally measured profile. t 0 , initial thickness; d 0 , initial midsurface diameter; L 0 , initial tube length; S4R, general
More
Image
Published: 30 November 2018
Fig. 15 Tube hydroforming with axial feed and internal pressure. Source: Ref 44 , 45
More
Image
Published: 01 January 2006
Fig. 55 Final part shape and FE predicted optimal preform shape for hydroforming of aluminum alloy 6061-T4 tube. Source: Ref 217
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
...-impregnated thermoplastics, and true thermoplastics. It describes the processing methods of thermoplastic composites, including weaving, seaming, autoclaving, preconsolidation, roll consolidation, roll forming/pultruding, thermoforming, press forming, hydroforming, and diaphragm forming. The article provides...
Abstract
Advanced thermoplastic composites possess impact resistance, fracture toughness, and elevated temperature endurance properties due to their melt-fusible nature. This article presents the material options available for thermoplastic composites such as pseudothermoplastics, post-impregnated thermoplastics, and true thermoplastics. It describes the processing methods of thermoplastic composites, including weaving, seaming, autoclaving, preconsolidation, roll consolidation, roll forming/pultruding, thermoforming, press forming, hydroforming, and diaphragm forming. The article provides information on different types of joints, namely, fastened, adhesive bonded, dual polymer bonded, co-consolidated, and welded joints. It explains the joining methods of thermoplastic composites, such as press forming, diaphragm forming, autoclaving, ultrasonic welding, resistance welding, and induction welding.
Image
Published: 01 January 2006
Fig. 14 Hybrid methods for use with soft tools. (a) Use of an electrohydraulic impulse in conjunction with sheet hydroforming. Hydroform forms the basic shape, while the shock wave imparts detail. (b) Use of electromagnetic coils to influence the strain distribution in electromagnetic
More
Image
Published: 01 January 2006
Fig. 4 Comparison of two methods of forming 2024-T4 aluminum into a conical die. (a) Schematic of the setup used in hydroforming and electrohydraulic forming. (b) Comparison of forming 2024-T4 sheet aluminum into a conical die using a hydroforming process (left) and using high-velocity
More
Image
Published: 01 January 2006
Fig. 16 Fluid-cell forming in a Hydroform press with rubber diaphragm
More
Image
Published: 01 January 2006
Fig. 19 Flatiron shell that was formed by the fluid-cell process in a Hydroform press to preserve the surface finish. When this shell was drawn in conventional dies, an impact line was caused below the radius that was difficult to remove by buffing. Dimensions given in inches
More
Image
Published: 01 January 2006
Fig. 57 Final part shape (input for FE design code) and predicted thickness strain contours for hydroforming of aluminum alloy 6061-T4 tubes. Source: Ref 217
More
Image
Published: 01 December 2004
Fig. 21 Polarized light micrograph of unalloyed uranium hot rolled at 630 °C (1165 °F), then hydroformed at 300 °C (570 °F) showing highly elongated grains. Attack polished using 5 wt% CrO 3 in H 2 O (etchant no longer recommended). 100×. Courtesy of J.W. Koger, ORNL
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006527
EISBN: 978-1-62708-207-5
..., and kinematic incremental sheet forming. The article concludes with a discussion on spinning, warm forming, and superplastic forming. aluminum alloys bendability compression bending deep drawing formability forming hydroforming roll bending sheet forming spinning ALUMINUM and its alloys...
Abstract
Aluminum and its alloys are among the more formable materials of commonly fabricated metals. This article discusses the formability, bendability, and springback of aluminum and its alloys. It describes the forming limit diagrams that illustrate the biaxial combinations of strain that can occur without splitting. The article reviews various bending methods, such as draw, compression, ram and press, roll, and stretch or tension bending. It describes the process variations of incremental sheet forming (ISF), such as single-point incremental forming, two-point incremental forming, and kinematic incremental sheet forming. The article concludes with a discussion on spinning, warm forming, and superplastic forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
... of the processes Reduction of joining force Resistance to corrosion Hydro-Self-Pierce Riveting (HSPR) The manufacturing of complicated workpieces often requires medium-based forming processes, or hydroforming. Thus, some parts may be difficult to reach, that is, a few parts are inaccessible...
Abstract
Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching, and self-pierce riveting.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
... are distinctly different from conventional stamping in that only a single tool is typically used. In this respect, the techniques can be compared to methods such as superplastic forming or hydroforming. However, high-velocity techniques can have significant advantages over both. Unlike superplastic forming...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... Stress-integration procedures for both continuum and crystal-plasticity mechanics Finite element design Finally, various examples of the simulation of aluminum sheet forming are presented. These examples include earing in cup drawing, wrinkling, automotive stamping, hemming, hydroforming...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005100
EISBN: 978-1-62708-186-3
... Vacuum forming Linear contouring Linear stretch forming (stretch forming) Linear roll forming (roll forming) Deep recessing and flanging Spinning (and roller flanging) Deep drawing Rubber-pad forming Marform process Rubber-diaphragm hydroforming (fluid cell forming...
Abstract
Sheet forming comprises deformation processes in which a metal blank is shaped by tools or dies, primarily under the action of tensile stresses. This article discusses the classification of sheet-forming processes for obtaining desired dimensional features. It describes different process-related developments, namely, superplastic forming of aluminum, forming of tailor-welded blanks, rubber-pad forming, and high-velocity metal forming. The article explains cost-effective approaches of evaluating tooling designs prior to the manufacture of expensive steel dies and dieless forming techniques such as thermal forming and peen forming. It provides information on the application of advanced high-strength steels, magnesium alloys, and various ultrafine-grain materials for superplastic sheet forming. The article concludes with information on the development and application of simulation, design, and control of sheet-forming processes.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
... forming options, such as tailor-welded blanks, sheet hydroforming, and superplastic forming, before making a feasible and cost-effective decision. Sheet Metal Forming Processes Sheet metal forming is one of the most important manufacturing processes in the automotive industry. Several different...
Abstract
This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal. It explains the numerical procedure for sheet metal forming and reviews the important technical issues in CAE simulations. The article provides information on the applications and process of metal-forming simulation. It also reviews the capabilities of major systems that are popular among sheet metal forming users worldwide.
1