Skip Nav Destination
Close Modal
By
David L. Bourell, Joseph J. Beaman, Jr., Donald Klosterman, Ian Gibson, Amit Bandyopadhyay
Search Results for
hydroform process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 41 Search Results for
hydroform process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 19 Flatiron shell that was formed by the fluid-cell process in a Hydroform press to preserve the surface finish. When this shell was drawn in conventional dies, an impact line was caused below the radius that was difficult to remove by buffing. Dimensions given in inches
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005124
EISBN: 978-1-62708-186-3
... Abstract This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process...
Abstract
This article focuses on the three basic groups of flexible-die forming methods: rubber pad, fluid cell, and fluid forming. It provides information on the Guerin process, the Verson-Wheelon process, the trapped-rubber process, the Marform process, the Hydroform process, the SAAB process, and the Demarest process. The article provides a discussion on the procedures of these processes, as well as the presses and tools used. It describes the methods of hydraulic forming of thin metal parts, namely, hydraulic forming with diaphragm, hydraulic forming with gasket and pressure control, and hydrobuckling.
Image
Published: 01 January 2006
Fig. 4 Comparison of two methods of forming 2024-T4 aluminum into a conical die. (a) Schematic of the setup used in hydroforming and electrohydraulic forming. (b) Comparison of forming 2024-T4 sheet aluminum into a conical die using a hydroforming process (left) and using high-velocity
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003425
EISBN: 978-1-62708-195-5
...-impregnated thermoplastics, and true thermoplastics. It describes the processing methods of thermoplastic composites, including weaving, seaming, autoclaving, preconsolidation, roll consolidation, roll forming/pultruding, thermoforming, press forming, hydroforming, and diaphragm forming. The article provides...
Abstract
Advanced thermoplastic composites possess impact resistance, fracture toughness, and elevated temperature endurance properties due to their melt-fusible nature. This article presents the material options available for thermoplastic composites such as pseudothermoplastics, post-impregnated thermoplastics, and true thermoplastics. It describes the processing methods of thermoplastic composites, including weaving, seaming, autoclaving, preconsolidation, roll consolidation, roll forming/pultruding, thermoforming, press forming, hydroforming, and diaphragm forming. The article provides information on different types of joints, namely, fastened, adhesive bonded, dual polymer bonded, co-consolidated, and welded joints. It explains the joining methods of thermoplastic composites, such as press forming, diaphragm forming, autoclaving, ultrasonic welding, resistance welding, and induction welding.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005127
EISBN: 978-1-62708-186-3
..., the process is typically carried out at room temperature, and it is a robust forming technique for almost any alloy, whereas superplastic forming can only be applied to a very limited set of materials at low strain rates. In comparison to hydroforming, because large forces and pressures in high-velocity...
Abstract
This article emphasizes the traits that are common to high-velocity forming operations. It describes general principles on how metal forming is accomplished and analyzed when inertial forces are large. The article discusses the principal methods of high-velocity forming, such as explosive forming, electrohydraulic forming, and electromagnetic forming. It provides examples that illustrate how these methods can be practically applied. The article concludes with information on the status and development potential for the technology.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
... of the processes Reduction of joining force Resistance to corrosion Hydro-Self-Pierce Riveting (HSPR) The manufacturing of complicated workpieces often requires medium-based forming processes, or hydroforming. Thus, some parts may be difficult to reach, that is, a few parts are inaccessible...
Abstract
Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching, and self-pierce riveting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006527
EISBN: 978-1-62708-207-5
... and large-quantity production. Tubular Hydroforming Tubular hydroforming is an efficient way to create automotive components of complex shapes and with close tolerances. In this context, hydroforming of hollow sections is becoming an established manufacturing technology as a cost-effective process...
Abstract
Aluminum and its alloys are among the more formable materials of commonly fabricated metals. This article discusses the formability, bendability, and springback of aluminum and its alloys. It describes the forming limit diagrams that illustrate the biaxial combinations of strain that can occur without splitting. The article reviews various bending methods, such as draw, compression, ram and press, roll, and stretch or tension bending. It describes the process variations of incremental sheet forming (ISF), such as single-point incremental forming, two-point incremental forming, and kinematic incremental sheet forming. The article concludes with a discussion on spinning, warm forming, and superplastic forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005100
EISBN: 978-1-62708-186-3
... Vacuum forming Linear contouring Linear stretch forming (stretch forming) Linear roll forming (roll forming) Deep recessing and flanging Spinning (and roller flanging) Deep drawing Rubber-pad forming Marform process Rubber-diaphragm hydroforming (fluid cell forming...
Abstract
Sheet forming comprises deformation processes in which a metal blank is shaped by tools or dies, primarily under the action of tensile stresses. This article discusses the classification of sheet-forming processes for obtaining desired dimensional features. It describes different process-related developments, namely, superplastic forming of aluminum, forming of tailor-welded blanks, rubber-pad forming, and high-velocity metal forming. The article explains cost-effective approaches of evaluating tooling designs prior to the manufacture of expensive steel dies and dieless forming techniques such as thermal forming and peen forming. It provides information on the application of advanced high-strength steels, magnesium alloys, and various ultrafine-grain materials for superplastic sheet forming. The article concludes with information on the development and application of simulation, design, and control of sheet-forming processes.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
... forming options, such as tailor-welded blanks, sheet hydroforming, and superplastic forming, before making a feasible and cost-effective decision. Sheet Metal Forming Processes Sheet metal forming is one of the most important manufacturing processes in the automotive industry. Several different...
Abstract
This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal. It explains the numerical procedure for sheet metal forming and reviews the important technical issues in CAE simulations. The article provides information on the applications and process of metal-forming simulation. It also reviews the capabilities of major systems that are popular among sheet metal forming users worldwide.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003419
EISBN: 978-1-62708-195-5
... pultrusion THE GREATER PART of the “Manufacturing Processes” Section in this Volume is devoted to widely accepted and commercially important manufacturing techniques for polymer composites, and it so happens that with one notable exception (compression molding), these techniques almost entirely rely...
Abstract
This article describes the characteristics of thermoplastic composites and its material forms. It presents the steps and considerations in manufacturing the thermoplastic composites. The article describes the various techniques of manufacturing, such as consolidation, autoclave molding, diaphragm forming, compression molding, roll forming, bladder molding, liquid molding, filament winding, and pultrusion.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005145
EISBN: 978-1-62708-186-3
... and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming...
Abstract
This article tabulates the nominal compositions for nickel and cobalt alloys. It illustrates the comparison of strain-hardening rates of a number of alloys in terms of the increase in hardness with increasing cold reduction. The forming practice for age-hardenable alloys and the lubricants used in the forming processes of nickel and cobalt alloys are also discussed. The article summarizes the modification of tools and dies used for cold forming other metals, as the physical and mechanical properties of nickel and cobalt alloys frequently necessitate it. It discusses forming techniques for these alloys and provides several examples of these techniques, which include shearing, blanking, piercing, deep drawing, spinning, explosive forming, bending, and expanding/tube forming.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... root cause analysis service life anomalies stress analysis ANALYZING FAILURES is a critical process in determining the physical root causes of problems. The process is complex, draws upon many different technical disciplines, and uses a variety of observation, inspection, and laboratory...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... to fracture. Fracture surface is along top of micrograph. Outside-diameter surface is along right side of micrograph. Note slip banding (arrows) emanating from microcrack. Original magnification: 116 × The analysis revealed that during the hydroforming process, heavy biaxial strains were imparted...
Abstract
This article briefly introduces the concepts of failure analysis, including root-cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It initially provides definitions of failure on several different levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service, and material, which are discussed in the following sections along with examples. The tools available for failure analysis are then covered. Further, the article describes the categories of mode of failure: distortion or undesired deformation, fracture, corrosion, and wear. It provides information on the processes involved in RCA and the charting methods that may be useful in RCA and ends with a description of various factors associated with failure prevention.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... that the response of the aggregate to external loading varies depending on the direction along which the load is applied. In addition, in the course of metal deformation processes, the shear slip activity induces rotation of the crystal. As a consequence, texture—and with it anisotropy—evolves during plastic...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003397
EISBN: 978-1-62708-195-5
... success has been achieved in the application of toolless manufacturing processes to tool production. One example is SLS of epoxy-infiltrated metal molds ( Ref 29 ). Freeform fabrication may also be used to produce tools for a large number of “half-mold” processes including hydroforming, diaphragm forming...
Abstract
This article reviews various rapid prototyping (RP) processes such as stereolithography, powder sintering, hot melt extrusion, sheet lamination, solid ground curing, and three-dimensional printing. It discusses the various material prototypes produced by RP technology. The list of materials includes particulate and fiber-reinforced polymers, ceramic-matrix composites, and metal-matrix composites. The article also provides information on freeform-fabrication techniques for composite part lay-up.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002481
EISBN: 978-1-62708-194-8
...). Special Forming Processes Explosive forming is used for bulging or reducing tubes and for forming shapes similar to those produced by stretching. Electromagnetic forming has similar applications, primarily to tubular parts. Hydroforming of tubes utilizes internal pressure to expand the tube; axial...
Abstract
This article explores the possibilities and limitations imposed by manufacturing processes and materials. Detailed design rules for the processes are presented. The article lists the main features of process groups in a tabular form. The physical characteristics and ratings of relative cost and production factors are also tabulated. The process groups include casting; deformation; powder processing; machining; noncutting; joining; ceramic, glass, and polymer processing; and composites manufacturing.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005128
EISBN: 978-1-62708-186-3
... the Guerin process, which is today (2005) synonymous with the term rubber-pad forming (see the article “Rubber-Pad Forming and Hydroforming” in this Volume). Both the Guerin and Marform (which is a refinement of the Guerin process) processes use hydraulic pressure instead of a drop hammer as the forming...
Abstract
This article discusses the advantages and limitations of drop hammer forming and presents the key factors for determining a process plan. It describes the characteristics of hammers and presents information on tool materials. It explains the use of lubricants and preparation of blanks for forming. The article also details the drop hammer forming process of steels, aluminum alloys, magnesium alloys, and titanium alloys.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005141
EISBN: 978-1-62708-186-3
... designed to simulate various production forming processes, including cup tests and bend tests, which help in determining these properties. It provides information on the equipment and tools, which are used in the forming of aluminum alloys. The article presents a list of lubricants that are most widely...
Abstract
This article discusses the general formability considerations of aluminum alloys. To conduct a complete analysis of a formed part, the required mechanical properties, as determined by several standard tests, must be considered. The article describes tension testing and other tests designed to simulate various production forming processes, including cup tests and bend tests, which help in determining these properties. It provides information on the equipment and tools, which are used in the forming of aluminum alloys. The article presents a list of lubricants that are most widely used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming, electrohydraulic forming, electromagnetic forming, hydraulic forming, shot peening, and drop hammer forming.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006423
EISBN: 978-1-62708-192-4
... Abstract Drawing is a process by which a workpiece is pulled against a die to produce a wire, bar, or tube with smaller cross sectional area compared with the initial stock. This article discusses the variables that affect the drawing process and the parameters that influence friction...
Abstract
Drawing is a process by which a workpiece is pulled against a die to produce a wire, bar, or tube with smaller cross sectional area compared with the initial stock. This article discusses the variables that affect the drawing process and the parameters that influence friction, lubrication, and wear. These parameters include process, lubricant, workpiece, and tooling. The article provides information on dry and wet lubrication in wire drawing. The dry lubrication refers to use of solid lubricants while wet lubrication refers to the practice of providing a liquid lubricant to the workpiece-die interface. The article describes the most common types and causes of die wear: abrasive wear, adhesive wear, surface fatigue wear, thermal fatigue wear, and catastrophic failure. It concludes with a discussion on the surface treatment and texturing that are used to reduce die wear in drawing operations.
1