Skip Nav Destination
Close Modal
By
Chris Schade
By
Thomas A. Wolfe, Ravi K. Enneti, Todd Leonhardt, John L. Johnson
By
Jennifer A. Lillard, Robert J. Hanrahan, Jr.
By
Luther M. Gammon, Robert D. Briggs, John M. Packard, Kurt W. Batson, Rodney Boyer ...
By
Vladimir Duz, Vladimir Moxson, Mykhailo Matviychuk, M. Ashraf Imam
By
Manijeh Razeghi
By
Te-Lin Yau, Richard C. Sutherlin
By
J. Baumeister, D. Lehmhus, J. Weise
By
Gerhard Leichtfried, John A. Shields, Jr., John L. Johnson
By
John A. Shields, Jr.
By
Hugh O. Pierson
Search Results for
hydride decomposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 85
Search Results for hydride decomposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Chemical and Electrolytic Methods of Powder Production
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
... such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Book Chapter
Production of Refractory Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006121
EISBN: 978-1-62708-175-7
... (930 to 1290 °F) range by decomposition in air. The other oxides require the conversion to occur at higher temperatures and in reducing atmospheres (e.g., hydrogen) ( Ref 1 , 7 , 8 , 9 , 10 , 11 ). Tungsten oxides may be doped with various additives prior to reduction to increase electron...
Abstract
Refractory metals are extracted from ore concentrates or scrap, processed into intermediate chemicals, and then reduced to metal, usually in powder form. This article discusses the raw materials needed and the processing steps for producing pure and alloyed refractory metal powders. The effects of processing conditions on the physical and chemical properties of tungsten, molybdenum, tantalum, niobium, and rhenium powders are reviewed.
Book Chapter
Corrosion of Uranium and Uranium Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003828
EISBN: 978-1-62708-183-2
... of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use. atmospheric corrosion...
Abstract
This article reviews general corrosion of uranium and its alloys under atmospheric and aqueous exposure as well as with gaseous environments. It describes the dependence of uranium and uranium alloy corrosion on microstructure, alloying, solution chemistry, and temperature as well as galvanic interactions between uranium, its alloys, and other metals. The article provides information on the atmospheric corrosion of uranium based on oxidation in dry air or oxygen, water vapor, and oxygen-water vapor mixtures depending upon particular storage conditions. The mechanism and morphology of hydride corrosion of uranium are discussed. The article provides information on environmentally assisted cracking, protective coatings, and surface modification of uranium and its alloys. It also summarizes the environmental, safety, and health considerations for their use.
Book Chapter
Metallography and Microstructures of Titanium and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
... essentially an all-alpha microstructure. Beta alloys are those alloys from which a small volume of material can be quenched into ice water from above its beta transus without martensitic decomposition of the beta phase. Alpha-beta alloys contain a mixture of alpha and beta phases at room temperature. Within...
Abstract
This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information on the macroexamination and microexamination for these alloys. It concludes with a discussion on the several metallographic techniques developed for specific purposes, such as recrystallization studies and microstructure/fracture topography correlations.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006661
EISBN: 978-1-62708-213-6
... challenging because the surface compounds decomposed or reacted before the reaction products could desorb from the surface. Activation energies of the reactions or decompositions were greater than the activation energies of desorption; that is, the β-hydride elimination reaction energy is greater than...
Abstract
This article focuses on the principles and applications of thermal desorption spectroscopy (TDS) use to study adsorption, desorption, and reaction of adsorbed atoms and molecules on surfaces. The discussion provides information on various components of and specimen preparation processes for a TDS experiment. The factors that must be considered when performing TPD experiments and several methods of analyzing TPD data are covered. A few studies where TPD was used to elucidate surface reactions that impact the tribological performances of materials are also discussed.
Book Chapter
Pressing and Sintering of Titanium Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006045
EISBN: 978-1-62708-175-7
... and sinter approach and without any additional processing operations ( Fig. 2 ). The advantages of titanium hydride powder are twofold: refinement of brittle hydride particles by compacting forces upon consolidation, and phase decomposition of the hydride into titanium upon heating in vacuum. As a result...
Abstract
Consolidation of titanium powders at room temperature may be performed by low-cost conventional powder metallurgy processes. This article provides information on various consolidation methods, namely, die pressing, direct powder rolling, and cold isostatic pressing. It also describes the sintering of blended elemental powders, high-strength titanium alloys, and porous material as well as the sintering of titanium powders by microwave heating.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001747
EISBN: 978-1-62708-178-8
... circuit. The copper alloy electrodes are water cooled to prevent their decomposition. The heat of the graphite crucible is directly transferred to the sample. The sample fuses to a molten state, causing the gases that had been absorbed into more stable metal/gas compounds in the sample to desorb...
Abstract
Inert gas fusion is a method of determining the quantitative content of gases in ferrous and nonferrous materials where gases, such as hydrogen, nitrogen, and oxygen, are physically and chemically adsorbed by the materials and later removed and swept by from the fusion area by an inert carrier gas. This article describes the operating principles and sample selection of inert gas fusion. It explains the mechanisms involved in the introduction of fusion gas, separation and detection of fusion gas by thermal-conductive and infrared detection methods. Additionally, the article explains the methods used for analyzing trace amounts of nitrogen, oxygen, and hydrogen in the carrier mediums, providing examples that aid in solving several problems.
Book Chapter
Chemical Vapor Deposition of Semiconductor Materials
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001284
EISBN: 978-1-62708-170-2
... the techniques of MBE or MOCVD, where the transport of source materials, rather than substrates, is controlled. MOCVD Process The MOCVD process uses at least one metal-organic chemical as a deposition precursor. The growth of Group III-V compounds from metal-organic and hydride sources was first reported...
Abstract
This article describes the vapor-phase growth techniques applied to the epitaxial deposition of semiconductor films and discusses the fundamental processes involved in metal-organic chemical vapor deposition (MOCVD). It reviews the thermodynamics that determine the driving force behind the overall growth process and the kinetics that define the rates at which the various processes occur. The article provides information on the reactor systems and hardware, MOCVD starting materials, engineering considerations that optimize growth, and the growth parameters for a variety of Group III-V, II-VI, and IV semiconductors.
Book Chapter
Corrosion of Zirconium and Zirconium Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003823
EISBN: 978-1-62708-183-2
... zirconium alloys hydride cracking ZIRCONIUM was identified by the German chemist Martin Heinrich Klaproth in 1789. It took another 135 years for Anton E. van Arkel and J.H. de Boer, of Einhoven, Holland, to develop the iodide decomposition process to make a pure, ductile metal. The iodide crystal bar...
Abstract
This article provides a description of the classification, industrial applications, microstructures, physical, chemical, corrosion, and mechanical properties of zirconium and its alloys. It discusses the formation of oxide films and the effects of water, temperature, and pH on zirconium. The delayed hydride cracking of zirconium is also described. The article provides information on the resistance of zirconium to various types of corrosion, including pitting corrosion, crevice corrosion, intergranular corrosion, galvanic corrosion, microbiologically induced corrosion, erosion-corrosion, and fretting corrosion. The article explains the effects of tin content in zirconium and effects of fabrication on corrosion. Corrosion control measures for all types of corrosion are also highlighted. The article concludes with information on the safety precautions associated with handling of zirconium.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001730
EISBN: 978-1-62708-178-8
... Nitrous oxide-acetylene flame 3000 0.1–2 5 1.7 × 10 6 8.5 × 10 6 Graphite furnace 300–3000 0.001–0.05 2.5 0.02 0.05 Quartz tube (hydride generator) 800–1400 1–40 15 0.007 0.1 (a) Dilution factor ( Df ) assumptions: Flames—20 L/min of fuel/oxidant, 7 mL/min sample aspiration...
Abstract
Atomic absorption spectrometry (AAS) is generally used for measuring relatively low concentrations of approximately 70 metallic or semimetallic elements in solution samples. This article describes several features that are common to three techniques, namely, AAS, atomic emission spectrometry (AES), and atomic fluorescence spectrometry (AFS). It discusses the reasons for the extreme differences in AAS sensitivities that affect AFS and AES. The article provides information on the advantages and disadvantages of the Smith/Hieftje system and two types of background correction systems, namely, the continuum-source background correction and Zeeman background correction. It also provides a list of applications of conventional AAS equipment, which includes most of the types of samples brought to laboratories for elemental analyses.
Book Chapter
Aluminum Foams—Processing, Properties, and Applications
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006495
EISBN: 978-1-62708-207-5
... of the metal or alloy. Various foaming agents have been shown to yield good results for the metals in consideration (aluminum, zinc, lead) ( Ref 34 ). Among the foaming agents used are metal hydrides such as titanium, zirconium, and magnesium hydride, which have decomposition temperatures between 280 and 600...
Abstract
This article describes manufacturing procedures that produce aluminum foams and have since become industrially important and successful. It discusses the foaming of melts by blowing agents and foaming of melts by gas injection. The article focuses on aluminum foams based on the Foaminal technology, because those foams dominate the technical applications of aluminum foams. It also discusses the mechanical properties of metal foams, such as general compression behavior, elastic behavior, strain-rate sensitivity, tensile behavior, ductility, fatigue, and mechanical damping. The article concludes with information on the applications of highly porous metal structures.
Book Chapter
Pressing and Sintering of Refractory Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006124
EISBN: 978-1-62708-175-7
... sintering at temperatures between 2500 and 3000 °C (4530 and 5430 °F) is essential for densification and the removal of oxygen from the pores ( Ref 12 ). Decomposition of the potassium silicate particles, combined with the removal of aluminum and silicon, occurs mainly at the second stage of sintering while...
Abstract
This article discusses the pressing and sintering of various refractory metal powders for the production of intermediate products as well as special cases of finished products. The metal powders considered include tungsten, molybdenum, tantalum, niobium and their alloys, as well as rhenium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
... decomposition into pure nickel pellet or powder. To produce powder, the nickel carbonyl gas is injected at a metered rate into the top of decomposer towers. The walls of the towers are heated to 300 to 500 °C (572 to 932 °F). The gas decomposes instantly to form nickel powder which settles at the bottom...
Abstract
This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy powders: water atomization, high-pressure water atomization, and gas atomization. The article also provides information on the applications of PM hot isostatic pressing in the oil and gas industry.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005353
EISBN: 978-1-62708-187-0
... or lubricant decomposition. In actual practice, it is therefore best to degas the melt to an acceptable level before casting. A typical target value, below which hydrogen-caused porosity is not normally a problem in the final casting, is that the degassing process should achieve a level of 0.15 mL H 2 /100 g...
Abstract
Gas porosity is a major factor in the quality and reliability of castings. The major cause of gas porosity in castings is the evolution of dissolved gases from melting and dross or slag containing gas porosity. Degassing is the process of removing these gases. This article describes the methods of degassing aluminum, magnesium, and copper alloys. It provides information on the sources of hydrogen in aluminum and gases in copper.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006093
EISBN: 978-1-62708-175-7
... that matches the melting point of the metal or alloy. Various foaming agents have been shown to yield good results for the metals under consideration (aluminum, zinc, lead) ( Ref 28 ). Among the foaming agents used are metal hydrides such as titanium, zirconium, and magnesium hydride, which have decomposition...
Abstract
Cellular or foam structures can be described by means of two broader cases: foams in which the pores are all connected to each other and with the environment (open-pore foams) and foams in which every single pore is completely enclosed by the matrix (closed-pore foams). This article describes the four process groups for the production of open- and closed-pore metal foams. It discusses the principles of the foaminal process with the description of various foaming agents, solidified metal foam, and geometries and derived structures of metal foams. The use of syntactic metal foam in various fields is included. The article reviews the mechanical properties of closed-pore metal foams, details the machining and joining procedures of the metal foams, and presents the applications of the metal foam.
Book Chapter
Surface Engineering of Refractory Metals and Alloys
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001313
EISBN: 978-1-62708-170-2
.../L (5 oz/gal) H 2 SO 4 at room temperature for 2 to 5 min with a current density of 5 to 10 A/dm 2 (50 to 100 A/ft 2 ). Another process intended to produce a hydride film as a basis for nickel plating is as follows: Tungsten is treated cathodically at 1 to 11 A/dm 2 (10 to 110 A/ft 2...
Abstract
This article addresses surface cleaning, finishing, and coating operations that have proven to be effective for molybdenum, tungsten, tantalum, and niobium. It describes standard procedures for abrasive blasting, molten caustic processing, acid cleaning, pickling, and solvent and electrolytic cleaning as well as mechanical grinding and finishing. The article also provides information on common plating and coating methods, including electroplating, anodizing, and oxidation-resistant coatings.
Book Chapter
Chemical Vapor Deposition of Nonsemiconductor Materials
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001283
EISBN: 978-1-62708-170-2
... in a sequential fashion without breaking the vacuum (thus minimizing contamination), and the distinction between the two basic processes becomes blurred ( Ref 3 ). CVD Reactions The numerous chemical reactions used in CVD include thermal decomposition (pyrolysis), reduction, hydrolysis, disproportionation...
Abstract
This article presents the principles of chemical vapor deposition (CVD) with illustrations. It discusses the types of CVD processes, namely, thermal CVD, plasma CVD, laser CVD, closed-reactor CVD, chemical vapor infiltration, and metal-organic CVD. The article reviews the CVD reactions of materials related to hard, tribological, and high-temperature coatings and to free-standing structures. It concludes by reviewing the advantages, disadvantages, and applications of CVD.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001463
EISBN: 978-1-62708-173-3
... is a controlling mechanism. This behavior was observed for the hyperbaric SMAW process at depths equivalent to 300 m (990 ft). The carbon monoxide is a product of the decomposition of the calcium or magnesium carbonate that exists in the SMAW electrode coating to provide a working and protective welding plasma...
Abstract
This article discusses the metallurgical aspects of underwater welds. It describes the microstructural development, which mainly includes three types of ferrite associated with low carbon steel weld metal: grain-boundary ferrite, sideplate ferrite, and acicular ferrite. The article explains the factors that affect heat-affected zone (HAZ) cracking. These include hydrogen from the weld pool, microstructures that develop in the HAZ, and stress levels that develop in the weld joint. The article describes the welding practices that can reduce residual stresses. It explains the effect of water pressure on the formation of porosity in underwater gravity welding. The article concludes with a discussion on the practical applications of underwater welding.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... subsequent age-hardened strength and hardness. Extremely slow cooling is detrimental, due to diffused α phase affecting the amount of available β phase for decomposition into α phase, because the precipitated α will be quite coarse, which limits the hardenability. Slow cooling is possible for α alloys...
Abstract
This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information on the effects of alloying elements on alpha/beta transformation. The article also discusses the heat treating procedures, and the furnaces used for heat treating titanium and titanium alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... metallurgy processed. Source: Ref 5 Chemical Processes After atomization, next in importance are chemical processes of powder production for P/M uses. These include reduction of oxides, precipitation from solution or from a gas, thermal decomposition, chemical embrittlement, hydride decomposition...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
1