Skip Nav Destination
Close Modal
Search Results for
hybrid laser welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 127 Search Results for
hybrid laser welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... Abstract Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Image
Published: 31 October 2011
Fig. 1 Schematic of hybrid laser arc welding process orientations. (a) Laser leading. (b) Arc leading. GMAW, gas metal arc welding
More
Image
Published: 30 November 2018
Fig. 14 Schematic of hybrid laser arc welding process orientations. (a) Laser leading. (b) Arc leading. GMAW, gas metal arc welding
More
Image
Published: 30 November 2018
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Fig. 2 In-process video image of penetration-mode hybrid laser arc welding on steel. GMAW, gas metal arc welding. Courtesy of Edison Welding Institute
More
Image
Published: 31 October 2011
Fig. 3 Cross section of hybrid laser arc welding on a carbon steel square butt joint. Courtesy of Edison Welding Institute
More
Image
Published: 31 October 2011
Fig. 4 Example joint designs for hybrid laser arc welding. (a) Square butt. (b) V-groove. (c) U-groove. (d) Lap weld. (e) Fillet weld. (f) Dissimilar-thickness joint
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
..., absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding. aluminum alloys laser beam welding porosity laser cutting laser roll welding hybrid laser welding...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding...
Abstract
This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding of dissimilar metals.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... Abstract This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Image
Published: 30 November 2018
Fig. 15 Schematic representation of yttrium-aluminum garnet (YAG) laser and YAG/metal inert gas (MIG) hybrid welding phenomena, showing (a) keyhole and bubble generation resulting in porosity during laser and hybrid welding at 120 A and (b) concave surface of molten pool leading to no porosity
More
Image
Published: 30 November 2018
Fig. 16 Effect of separation distance and metal inert gas (MIG) torch direction on weld appearance and quality in fiber laser/MIG hybrid welding of AA5083 with pure argon shielding gas (100%). (a) Arc-leading orientation. (b) Laser-leading orientation. Source: Ref 36
More
Image
Published: 31 December 2017
Fig. 8 Illustration of hybrid friction stir processing with laser preheating. (a) Schematic. FSW, friction stir welding. (b) Actual. Source: Ref 17
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006389
EISBN: 978-1-62708-192-4
... can be used for this type of hybrid FSP. Fig. 8 Illustration of hybrid friction stir processing with laser preheating. (a) Schematic. FSW, friction stir welding. (b) Actual. Source: Ref 17 In addition to improved ease of processing, preheating ahead of friction stirring has also been...
Abstract
This article discusses the application of friction stir processing (FSP) and friction surfacing for tribological components. It describes the three critical aspects involved in the application of FSP for near-surface material modifications intended for tribological applications. These include tools, processing parameters, and machines. The article also discusses the equipment and processing parameters for friction surfacing. It describes various hybrid stir processing techniques that involve preheating of the workpiece material, especially relatively hard and high-strength ones. The article presents a partial list of surface-modification methods based on FSP. The partial list includes surface hardening, surface composites, and additive coating. The article also provides information on generation of residual stresses in metallic materials and alloys form different variants of FSP.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005638
EISBN: 978-1-62708-174-0
... as appropriate to replace lost alloying elements, include hybrid welding, such as laser + MIG or laser + plasma, to extend the weld process tolerance window. Figure 4 tables a schematic illustration of the different types of defects encountered when laser welding metallic materials ( Ref 8 ). Fig. 4...
Abstract
This article reviews weld quality monitoring considerations for two automotive materials, steel and aluminum, with a focus on photosensor technology. It provides an overview of the process description, process parameters, and weld characteristics of laser welding. The article discusses real-time or in-process monitoring, which is done with optical, acoustic, and/or charged-particle sensors. It highlights the advantages, applications, and selection criteria of weld monitoring system and concludes with examples of laser weld monitoring in the production of tailor-welded blanks.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... , John Wiley & Sons Inc . • Migliore L. , Ed., Laser Materials Processing , Marcel Dekker , New York and Basel, Switzerland • Olsen F.O. , Hybrid Laser Arc Welding , Technical University of Denmark, Denmark, CRC Press • Ready J.F. and Farson D.F. , Ed...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... of welding and brazing in weld brazing, and the combining of riveting and adhesive bonding in rivet bonding. Similar hybrids have also been developed within welding, combining two different welding processes to obtain some benefit(s). A few examples include laser/gas tungsten arc, laser/gas metal arc...
Abstract
Joining is key to the manufacture of large or complex devices or assemblies; construction of large and complex structures; and repair of parts, assemblies, or structures in service. This article describes the three forces for joining: physical, chemical, and mechanical. It provides an overview of the joining processes, namely, mechanical fastening, integral attachment, adhesive bonding, welding, brazing, and soldering. The article concludes with information on the various aspects of joint design and location that determine the selection of a suitable joining method.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... positive; DCEN, direct current electrode negative. Courtesy of Edison Welding Institute Hybrid laser GMAW is a process variation in which laser beam delivery optics are integrated with a GMAW gun. Higher productivities are possible than conventional GMAW, as the laser beam provides added penetration...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006575
EISBN: 978-1-62708-290-7
... material. Modeling approaches for simulating the deposition of material in multipass welding ( Ref 5 – 7 ) have been extended and applied to simulate DED builds manufactured using both laser ( Ref 8 – 13 ) and electron beam systems ( Ref 14 ). The DED models agree closely with measured temperature...
Abstract
This article provides a detailed overview of the thermomechanical modeling of additive manufacturing (AM) process. It begins with information on a basic understanding of the formation of residual stress during AM processing followed by a discussion on models commonly applied in AM modeling, such as heat-input models, material models, and material activation models. Information on experimental setup for validation and simulation of directed-energy deposition model is then included. The article also provides information on moving-source and part-scale analyses to simulate the laser powder-bed fusion AM process.
1