Skip Nav Destination
Close Modal
Search Results for
hot-work tool steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1277 Search Results for
hot-work tool steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 48 Runner block made from a proprietary hot-work tool steel that was used to die cast aluminum transmission case covers. Macrograph shows the worn out surface of the die. 0.25×. Close-up views of areas 1 and 2 are shown in Fig. 49 .
More
Image
Published: 01 January 2002
Fig. 25 Runner block made from a proprietary hot work tool steel that was used to die cast aluminum transmission case covers. Macrograph shows the worn out surface of the die. 0.25×. Close-up views of areas 1 and 2 are shown in Fig. 26 .
More
Image
Published: 01 December 1998
Fig. 6 Effect of tempering temperature on hardness of type H26 hot-work tool steel for two different tempering temperatures
More
Image
Published: 30 August 2021
Fig. 48 Runner block made from a proprietary hot work tool steel that was used to die cast aluminum transmission case covers. Macrograph shows the worn-out surface of the die. Original magnification: 0.25×. Close-up views of areas 1 and 2 are shown in Fig. 49 .
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005974
EISBN: 978-1-62708-168-9
... Abstract This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools...
Abstract
This article focuses on heat treating of the most important H-series and low-alloy hot-work tool steels, namely, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and surface hardening. It describes the heat-treating procedure for hot-work tools using examples. The article provides information on the North American Die-Casting Association's requirements for steel grades and heat treatment of dies made of hot-work tool steels. It also describes the chemical compositions and mechanical and metallurgical properties of hot-work tool steels.
Image
Published: 01 December 1998
Fig. 5 Hot hardnesses of AISI hot-work tool steels. Measurements were made after holding at the test temperature for 30 min.
More
Image
Published: 01 January 2005
Fig. 4 Hot hardnesses of AISI hot-work tool steels. Measurements were made after holding at the test temperature for 30 min. Source: Ref 2
More
Image
Published: 01 December 2004
Image
Published: 01 December 1998
Fig. 6 Resistance of AISI hot-work tool steels to softening during 10 h elevated-temperature exposure as measured by room-temperature hardness. Unless otherwise specified by values in parentheses, initial hardness of all specimens was 49 HRC.
More
Image
Published: 30 September 2015
Fig. 43 True specific heat of low alloy and hot working tool steels. Squares, low alloy tool steels with 1% ≤ Cr ≤ 2.4% and 0.4% ≤ Mo ≤ 1%; circles, hot working tool steels with around 5% Cr, 1% ≤ Mo ≤ 3% and 0.4% ≤ V ≤ 1.1%
More
Image
Published: 01 October 2014
Fig. 1 Tempering curves for the most common hot-work tool steels. Tempering curves are obtained after hardening small (25 mm or 1 in.) specimens of all materials with the usual hardening temperature: 1020 °C for H13, TENAX300 (brand name of low-silicon H11), and VHSUPER (brand name of high
More
Image
Published: 01 October 2014
Image
Published: 01 October 2014
Image
Published: 01 October 2014
Image
Published: 01 January 2005
Fig. 5 Resistance of AISI hot-work tool steels to softening during 10 h elevated-temperature exposure as measured by room-temperature hardness. Unless otherwise specified by values in parentheses, initial hardness of all specimens was 49 HRC. Source: Ref 3
More
Image
Published: 01 January 2005
Fig. 17 Amount of wear of hot work tool steels as a function of the number of forgings. Equivalent steels are in parentheses. Source: Ref 29
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001042
EISBN: 978-1-62708-161-0
... Abstract The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels...
Abstract
The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because of their high carbon, nitrogen, or alloy contents. For high-speed tool steels, a number of important end-user properties have been improved by powder processing; machinability, grindability, dimensional control during heat treatment, and cutting performance under difficult conditions where high edge toughness is essential. Several of these advantages also apply to P/M cold- and hot-work tool steels, which, compared to conventional tool steels, offer better toughness and ductility for cold-work tooling, better thermal fatigue life, and greater toughness for hot-work tooling.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
... Abstract Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot...
Abstract
Tool steels are carbon, alloy, and high-speed steels that can be hardened and tempered to high hardness and strength values. This article discusses the classifications of commonly used tool steels: water-hardening tool steels, shock-resisting tool steels, cold-work tool steels, and hot-work tool steels. It describes four basic mechanisms of tool steel wear: abrasion, adhesion, corrosion, and contact fatigue wear. The article describes the factors to be considered in the selection of lubrication systems for tool steel applications. It also discusses the surface treatments for tool steels: carburizing, nitriding, ion or plasma nitriding, oxidation, boriding, plating, chemical vapor deposition, and physical vapor deposition. The article describes the properties of high-speed tool steels. It summarizes the important attributes required of dies and the properties of the various materials that make them suitable for particular applications. The article concludes by providing information on abrasive wear and grindability of powder metallurgy steels.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003975
EISBN: 978-1-62708-185-6
... fatigue, and mechanical fatigue. The article describes heat treating practices commonly employed for chromium- and tungsten-base AISI hot-work tool steels. It discusses the fabrication of impression dies, and the advantages and disadvantages of cast dies. The article concludes with a discussion...
Abstract
This article addresses dies and die materials used for hot forging in vertical presses, hammers, and horizontal forging machines (upsetters). It reviews the properties of die materials for hot forging, including good hardenability, resistance to wear, plastic deformation, thermal fatigue, and mechanical fatigue. The article describes heat treating practices commonly employed for chromium- and tungsten-base AISI hot-work tool steels. It discusses the fabrication of impression dies, and the advantages and disadvantages of cast dies. The article concludes with a discussion on the factors that affect die life and safety precautions to be considered during die construction.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
..., austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool...
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
1