Skip Nav Destination
Close Modal
Search Results for
hot-compression testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1150 Search Results for
hot-compression testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009009
EISBN: 978-1-62708-185-6
... and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test. cylindrical compression test deformation heating hot plane-strain compression test hot-compression testing plane-strain compression test ring...
Abstract
This article describes the use of compression tests, namely, cylindrical compression, ring compression, and plane-strain compression tests at elevated temperatures. It discusses the effects of the temperature, strain rate, and deformation heating on metals during the cylindrical compression test, with the help of flow curves. The article illustrates the testing apparatus used in the cylindrical compression test. It describes the issues regarding friction and temperature, and strain-rate control with proper test equipment and experimental planning during the ring compression test and plane-strain compression test. The article also reviews the testing conditions, procedures, and advantages of hot plane-strain compression test.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
...-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing. hot tension testing hot compression testing deformation strain hardening mechanical testing strain...
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Image
Published: 01 January 2005
Fig. 1 Gleeble test unit used for hot-tension and hot-compression testing. (a) Specimen in grips showing attached thermocouple wires and linear variable erential transformer (LVDT) for measuring strain. (b) Close-up of a test specimen. Courtesy of Duffers Scientific, Inc.
More
Image
in Simulation of Microstructure and Texture Evolution in Aluminum Sheet
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Image
Published: 01 January 2005
Fig. 52 Specimens of Ti-6242Si from isothermal hot compression tests. Tested at 913 °C (1675 °F); ε ¯ ˙ = 2 s − 1 . Starting microstructures were (a) α + β (equiaxed alpha). (b) β (Widmanstätten alpha). Magnification: 3×. Source: Ref 122
More
Image
Published: 01 January 2005
Fig. 23 Specimens of Ti-6Al-2Sn-4Zr-2Mo-0.1Si from isothermal hot compression tests at 913 °C (1675 °F), ε ¯ ˙ ≈ 2 s − 1 . Starting microstructures were (a) equiaxed alpha and (b) colony alpha. Source: Ref 47
More
Image
Published: 01 January 2005
Fig. 24 Specimens of Ti-10V-2Fe-3Al from isothermal hot compression tests at (a, b, c) 704 °C (1300 °F) and (d, e, f) 816 °C (1500 °F). Strain rates were (a, d) 10 −3 s −1 , (b, e) 10 −1 s −1 , and (c, f) 10 s −1 . Prior to testing, the alloy had been beta annealed to yield an equiaxed-beta
More
Image
Published: 01 January 2005
Fig. 8 Specimens of Ti-10V-2Fe-3Al from isothermal hot compression tests. (a) to (c) Tested at 704 °C (1300 °F). (d) to (f) Tested at 816 °C (1500 °F). Strain rates were 10 −3 s −1 (a, d), 10 −1 s −1 (b, e), and 10 s −1 (c, f). Before testing, the alloy had been β annealed to yield
More
Image
Published: 01 January 2005
Fig. 8 Hot-compression test specimens of titanium alloy Ti-10V-2Fe-3Al. Specimens (a), (b), and (c) were tested at 704 °C and (d), (e), and (f) at 816 °C. Test strain rates were 10 −3 s −1 (a) and (d), 10 −1 s −1 (b) and (e), and 10 s −1 (c) and (f). All specimens had an equiaxed-β
More
Image
in Simulation of Microstructural Evolution in Steels
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 18 Five-hit hot compression test: flow-stress measurements vs. model predictions for V-HSLA steel. (a) Test conditions: temperature, 1100 °C; strain rate, 1.0/s; initial austenite grain size, 200 μm; interhit time, 1.0 s. (b) Test conditions: temperature, 1100 °C; strain rate, 1.0/s
More
Image
Published: 01 January 2005
Fig. 42 The Gleeble test unit used for hot tension and compression testing. (a) Specimen in grips showing attached thermocouple and LVDT for measuring strain. (b) Close-up of a compression test specimen. Courtesy of Dynamic Systems, Inc.
More
Image
Published: 01 January 2005
Fig. 17 The Gleeble test unit used for hot tension and compression testing. (a) Specimen in grips showing attached thermocouple wires and liner variable differential transformer for measuring strain. (b) Closeup of a compression test specimen. Courtesy of Dynamics Systems, Inc.
More
Image
in Bulk Formability of Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 2 Gleeble test unit used for hot tension and compression testing. (a) Specimen in grips showing attached thermocouple wires and linear variable differential transformer (LVDT) for measuring strain. (b) Close-up of a test specimen. Courtesy of Duffers Scientific, Inc.
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
.... 2 Comparison of effective stress-strain curves determined for type 304L stainless steel in compression, tension, and torsion. (a) Cold working and warm working temperatures. (b) Hot working temperatures. Source: Ref 2 Fracture data from torsion tests are usually reported in terms...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Image
Published: 01 January 2005
Fig. 13 Plot of the product of the applied peak stress σ p and the square root of the grain size d versus temperature indicating the occurrence of wedge cracking during hot compression testing of Ti-48Al-2.5Nb-0.3Ta. Source: Ref 82
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009005
EISBN: 978-1-62708-185-6
...; and mechanical and physical properties. Often, simple tests such as the hot compression, tension, and torsion tests are useful in the initial selection of forging temperature and strain rate and in gross estimation of forgeability. Usually, the estimate of forgeability is based on a parameter such as upset-test...
Abstract
Workability in forging depends on a variety of material, process-variable, and die-design features. A number of test techniques have been developed for gaging forgeability depending on alloy type, microstructure, die geometry, and process variables. This article summarizes some common workability tests and illustrates their application in practical forging situations. Workability tests for open-die forging of cast structures, hot and cold open-die forging of recrystallized structures, fracture-controlled defect formation, establishing effects of process variables and secondary tensile stresses on forgeability, and flow-localization-controlled failure are some common tests. The workability test used for closed-die forging is also summarized.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... alloy. Left, undeformed compression specimen; center, compression with friction (note barreling and crack); right, compression without friction. Source: Ref 4 Extensive finite-element modeling of the hot compression test using realistic parameters for hot-worked alloys showed that an observed...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... compression. Source: Ref 5 At hot working temperatures (i.e., temperatures typically in excess of one-half of the absolute melting point), the flow stress of nearly all metals is very strain-rate dependent. Therefore, hot compression tests should be conducted using a test machine that provides...
Abstract
This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect of deformation heating on flow stress. It provides metallurgical considerations at hot working temperatures and presents flow curves at conventional metalworking strain rates. The article describes the effect of microstructural scale, crystallographic texture, and equiaxed phases on flow stress at hot working temperatures. It tabulates a summary of certain values describing the flow stress-strain rate relation for steels, aluminum alloys, copper alloys, titanium alloys, and other metals at various temperatures.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009012
EISBN: 978-1-62708-185-6
... Abstract This article summarizes the types of hot working simulation tests such as hot tension, compression, and torsion testing used in the assessment of workability. It illustrates the use of hot torsion testing for the optimization of hot working processes. The article concludes...
Abstract
This article summarizes the types of hot working simulation tests such as hot tension, compression, and torsion testing used in the assessment of workability. It illustrates the use of hot torsion testing for the optimization of hot working processes. The article concludes with information on some hot torsion application examples.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
... phenomenological in nature. However, the general forms of these models are also applicable to most other steels, with minor changes. To develop such semiempirical or phenomenological models for microstructural evolution, experimental techniques, such as hot compression tests and hot torsion tests, have been...
Abstract
Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate microstructural evolution in steels. It presents an example of the integration of finite element modeling and microstructural evolution models for the simulation of metal flow and microstructural evolution in a hot rolling process.
1