1-20 of 1626 Search Results for

hot pressing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
... Abstract Successful application of forging and hot pressing involves careful consideration of powder preparation and forming process parameters. This article describes the important process features for powder forging and hot pressing, along with specific applications and materials used...
Image
Published: 01 November 1995
Fig. 18 The combined hot pressing and reaction bonding process of making a SiC fiber/Si 3 N 4 composite. Source: Ref 64 More
Image
Published: 30 September 2015
Fig. 10 Graphite die used to consolidate beryllium powder by vacuum hot pressing More
Image
Published: 30 September 2015
Fig. 22 Microstructure of beryllium consolidated by vacuum hot pressing revealed using polarized light microscopy More
Image
Published: 30 September 2015
Fig. 40 Schematic pressure-temperature schedule for hot pressing with a high-strength graphite die More
Image
Published: 30 September 2015
Fig. 1 Deformation mode for (a) forging and (b) hot pressing More
Image
Published: 30 September 2015
Fig. 2 Stress conditions for (a) forging and (b) hot pressing. p , axial pressure; p ′, lateral pressure More
Image
Published: 01 January 2001
Fig. 1 Schematic of the slurry infiltration process followed by hot pressing More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
... Abstract This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP...
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
... Abstract Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006140
EISBN: 978-1-62708-175-7
... Abstract Prealloyed (PA) powder metallurgy is a technique where complex near-net shape titanium aircraft components are fabricated with low buy-to-fly ratios. This article describes the physical principle, mechanism, and simulation and modeling of metal can and hot isostatic pressing (HIP...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005509
EISBN: 978-1-62708-197-9
... Abstract This article discusses the two major applications of hot isostatic pressing (HIP), such as healing of inherent internal defects in castings and welds, and consolidation of powder materials. It describes the design principles of the HIP tooling, as well as the problems associated...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
... Abstract Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores...
Image
Published: 01 November 1995
Fig. 19 Typical ambient hot press (uniaxial, unidirectional). HPC, hot press cavity More
Image
Published: 01 January 2006
Fig. 6 Hot-formed parts being removed from a hot press More
Image
Published: 01 December 2004
Fig. 20 S-65B vacuum hot-pressed block; billet consolidated from impact-ground powder. Polarized light micrograph shows substantially equiaxed grains with particles of BeO. Bright areas are locations where BeO has been “pulled out” during metallographic preparation. As-polished. 250× More
Image
Published: 01 December 2004
Fig. 21 S-200F vacuum hot-pressed block; billet consolidated from impact-ground powder. Seen under polarized light, the microstructure consists of equiaxed grains with particles of BeO. Average grain size is 8 to 10 μm; bright areas show where oxide has been “pulled out” during preparation More
Image
Published: 01 December 2004
Fig. 22 I-220 vacuum hot-pressed block; billet consolidated from impact-ground powder. Polarized light micrograph shows substantially equiaxed grains with BeO particles. Average grain size is 8 to 9 μm; bright areas are locations where BeO was “pulled out” during preparation. The relatively More
Image
Published: 01 December 2004
Fig. 23 I-400 vacuum hot-pressed block; billet consolidated from ball-milled powder. Under polarized light, microstructure shows substantially equiaxed grains with particles of BeO, along with bright areas where BeO was “pulled out” during preparation. Average grain size is 5 μm or less More
Image
Published: 01 December 2004
Fig. 24 SR-200 sheet, rolled at elevated temperature from S-200E vacuum hot-pressed block. Under polarized light, longitudinal section shows grains elongated in the rolling direction. This structure is typical of beryllium sheet, which often has reduced ductility if it is recrystallized after More