Skip Nav Destination
Close Modal
Search Results for
hot gas soldering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 404 Search Results for
hot gas soldering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001399
EISBN: 978-1-62708-173-3
... Abstract Hot gas soldering is a process that is commonly used in applications where the workpiece thermal mass is small and the melting temperature of the solder is relatively low. This article describes the characteristics of hot gas heating that are critical to its effectiveness in soldering...
Abstract
Hot gas soldering is a process that is commonly used in applications where the workpiece thermal mass is small and the melting temperature of the solder is relatively low. This article describes the characteristics of hot gas heating that are critical to its effectiveness in soldering. These characteristics include the focus of gas flow, gas flow rates (velocity and volume), gas temperature, and typical gas media. The article explains the thermal profile of a component being soldered and the temperature across adjacent components, which helps to understand time-temperature relationship. It concludes with a discussion on reliability concerns and processing concerns when using hot gas soldering in electronics assembly.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001346
EISBN: 978-1-62708-173-3
..., electrodeposition, or chemical displacement. Hot Dipping Hot dipping can be accomplished by fluxing and dipping the parts in molten tin or solder. Often, small parts are initially placed in wire baskets and then cleaned, fluxed, and dipped in the molten metal. Finally, they are centrifuged to remove...
Abstract
Soldering is defined as a joining process by which two substrates are bonded together using a filler metal with a liquidus temperature. This article provides an overview of fundamentals of soldering and presents guidelines for flux selection. Types of fluxes, including rosin-base fluxes, organic fluxes, inorganic fluxes, and synthetically activated fluxes, are reviewed. The article describes the joint design and precleaning and surface preparation for soldering. It addresses some general considerations in the soldering of electronic devices. Soldering process parameters, affecting wetting and spreading phenomena, such as temperature, time, vapor pressure, metallurgical and chemical nature of the surfaces, and surface geometry, are discussed. The article also describes the applications of furnace soldering, resistance soldering, infrared soldering, and ultrasonic soldering. It contains a table that lists tests commonly used to evaluate the solderability properties of selected soldered components.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003211
EISBN: 978-1-62708-199-3
...: Soldering iron or bit Flame or torch soldering Hot dip soldering Induction soldering Resistance soldering Furnace soldering Infrared soldering Ultrasonic soldering Wave soldering Laser soldering Hot gas soldering Vapor-phase soldering Each of the methods is described...
Abstract
Soldering involves heating a joint to a suitable temperature and using a filler metal (solder) that melts below 450 deg C (840 deg F). Beginning with an overview of the specification and standards and applications, this article discusses the principal levels and effects of the most common impurity elements in tin-lead solders. It describes the various processes involved in the successful soldering of joints, including shaping the parts to fit closely together; cleaning and preparing the surfaces to be joined; applying a flux; assembling the parts; and applying the heat and solder.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001344
EISBN: 978-1-62708-173-3
... to such a degree that a new technique for attachment was needed, and surface mounting was developed. Surface mount technology in turn required new ways to make solder joints, prompting the development of vapor phase, infrared, hot gas, and other reflow soldering techniques. Soldering remains the attachment...
Abstract
This article presents an introduction to brazing, including information on its mechanics, advantages, and limitations. It reviews soldering with emphasis on chronology, solder metals, and flux technology. The article also provides useful information on mass, wave, and drag soldering. It presents a table which contains information on the comparison of soldering, brazing, and welding.
Image
in Corrosion of Electronic Equipment in Military Environments
> Corrosion: Environments and Industries
Published: 01 January 2006
Fig. 8 Two solder connections that were made without a heat sink. The solder area was hot enough to initiate the thermal decomposition of the polyvinyl chloride insulation. The continuing decomposition of the insulating material resulted in the release of hydrogen chloride gas to the inside
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001395
EISBN: 978-1-62708-173-3
... and the resulting thermal gradient. Cooldown As the assembly passes its peak temperature and leaves the heated tunnel, it begins to cool, eventually passing the point where the solder solidifies. Cooling can be aided by fans, blowers, inert gas curtains, refrigeration, normal exposure to ambient air...
Abstract
Furnace soldering (FS) encompasses a group of reflow soldering techniques in which the parts to be joined and preplaced filler metal are put in a furnace and then heated to the soldering temperature. This article describes three reflow soldering techniques in surface-mount technology, namely, vapor-phase reflow, area conduction, and infrared heating. These three techniques are considered as mass reflow techniques, because all of the solderable interconnections on the surface of a printed wiring board (PWB) assembly are brought through the reflow heating cycle simultaneously. The article explains four regions of reflow profile, namely, preheat (prebake), preflow (soak), reflow, and cooldown. It concludes with a description on the bare copper assembly process, which is carried out in the inert atmosphere.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... between thermal spray deposits and sub- weld. strate, or between adhesive and adherend in an adhesive bonded joint. *Adapted from Glossary of Terms, ASM Handbook, Volume 6, Welding, Brazing, and Soldering, ASM International, 1993. Glossary of Terms / 883 bottle A nonstandard term for gas cylinder. C cone...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001460
EISBN: 978-1-62708-173-3
... hot irons, gas jets, and other instruments. Preforms or solder paste can be placed at the joint area, and the substrate is either directly or indirectly heated, such as by an infrared (IR) furnace, causing the solder to melt and form the joint. Although solder pastes are often used in manual assembly...
Abstract
Soldering represents the primary method of attaching electronic components, such as resistors, capacitors, or packaged integrated circuits, to either printed wiring board whose defects is minimized by consideration of proper PWB design, device packages, and board assembly. This article discusses the categories that are most important to successful electronic soldering, namely, solders and fluxes selection, nature of base materials and finishes, solder joint design, and solderability testing.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... FRW friction welding FS furnace soldering ft foot FW flash welding g gram g acceleration due to gravity gf gram force GMA gas metal arc GMAC gas metal arc cutting GMAW gas metal arc welding GPa gigapascal GTA gas tungsten arc GTAC gas tungsten arc...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... and soldering appear under the heterogeneous subdivision. Further subclassifications consider use of filler or not (i.e., autogenous welding), as well as other key differences. Fig. 2 Schematic representation of the overall taxonomy of welding processes. GTAW, gas tungsten arc welding; GMAW, gas metal...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.9781627081740
EISBN: 978-1-62708-174-0
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
...) with coated electrodes. It has been applied to material as thin as 1.2 mm (0.05 in.), and there is no upper limit on thickness. Other very commonly used processes for stainless steels are gas-tungsten arc welding (GTAW), gas-metal arc welding (GMAW), submerged arc welding (SAW), flux-cored arc welding (FCAW...
Abstract
Fabrication of wrought stainless steels requires use of greater power, more frequent repair or replacement of processing equipment, and application of procedures to minimize or correct surface contamination because of its greater strength, hardness, ductility, work hardenability and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing, hardening, and stress relieving. Stainless steels are commonly joined by welding, brazing, and soldering. The article lists the procedures and precautions that should be instituted during welding to ensure optimum corrosion resistance and mechanical properties in the completed assembly.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001459
EISBN: 978-1-62708-173-3
... of conduit for nonpotable water, industrial fluids, compressed gas products, and vacuum assemblies. The narrow pasty range of these alloys limits their workability prior to solidification. The largest use of the eutectic and near-eutectic solder is in the assembly of circuit boards for electronic products...
Abstract
Soldering technology has been used in applications ranging from the packaging of integrated circuit chips to the fabrication of industrial heat exchangers and consequently in structural or electronic applications. This article provides information on various soldering parameters, including types of solder alloy in terms of selection process; selection of substrate base material; flux selection based on adequate wettability by the solder; solder joint assembly; combined substrate, solder, and flux properties; and manufacturing procedures. Each of these parameters is explored using examples of both structural and electronic applications. The article concludes with a discussion on the environmental, safety, and health issues to be considered during soldering.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001401
EISBN: 978-1-62708-173-3
... Alternative to CFC Cleaning , Elect. Pack. Prod. , June 1990 , p 95 4. Fodor P. and Lensch P. , Cover Gas Soldering Leaves Nothing to Clean Off PCB Assembly , Elect. Pack. Prod. , April 1990 , p 64 5. Botham R. , Lowell C. , and Sterritt J. , Wave Soldering...
Abstract
This article focuses on the design considerations and process parameters critical to the successful implantation of wave soldering on printed circuit boards. The design considerations include the through-hole technology and the surface-mount technology. The article presents information on process parameters, which can be divided into three groups: the fluxing operation, solder wave properties, and process schedule. It provides information on various solder defects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001400
EISBN: 978-1-62708-173-3
... or in vacuum (e.g., localized cover gas blankets or more sophisticated equipment such as glove boxes and large chambers). Induction heating is well suited for robotic automation, including bench-top systems as well as larger-scale factory production lines. Monitoring the workpiece temperature by optical...
Abstract
This article describes resistivity effects and Curie temperature effects on coupling efficiency during induction heating in the soldering operation. It discusses the effects of workpiece geometry during the induction heating. The practices associated with the use of preplaced solder are reviewed. The article provides useful information on setup parameters and safety concerns for the use of induction heating.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
... sociation hcp hexagonal close-packed LME liquid-metal embrittlement NIST National Institute of Standards and HHC hot-hollow cathode LMP Larson-Miller parameter HIC hydrogen-induced cracking In natural logarithm (base e) Technology HIP hot isostatic pressing LNG liquefied natural gas nm nanometer HK Knoop...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001067
EISBN: 978-1-62708-162-7
... by a wide variety of hot and cold methods. Can be easily stamped, bent, coined, sheared, spun, upset, swaged, forged, roll threaded, and knurled Weldability Can be readily soldered, brazed, gas tungsten arc welded, gas metal arc welded, or upset welded. its capacity for being oxyfuel gas welded...
Abstract
This article is a compilation of the property data for standard grades of wrought copper and copper alloys. Data are provided for mechanical, physical, thermal, electrical, optical, and magnetic properties. The list for each alloy includes its commercial names, chemical composition, relevant specifications and standards, fabrication characteristics, mass characteristics, and applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... called terneplate (see the Section “Lead and Lead Alloys” in this Volume). Terneplate is easily formed and easily soldered. It is used as a roofing and weather-sealing material and in the construction of automotive gasoline tanks, signs, radiator header tanks, brackets, chassis and covers for electronic...
Abstract
Tin is a soft, brilliant white, low-melting metal that is most widely known and characterized in the form of coating. This article discusses the primary and secondary production of tin and explains the uses of tin in coating, namely tinplating, electroplating, and hot dip coatings. It presents a short note on pure (unalloyed) tin and uses of tin in chemicals. The article also covers the compositions and uses of tin alloys which include solders, pewter, bearing alloys, alloys for organ pipes, and fusible alloys. It goes on to discuss the other alloys containing tin including battery grid alloys, type metals, copper alloys, dental alloys, cast irons, titanium alloys, and zirconium alloys. Finally, it presents a short note on the applications of tin powder and corrosion resistance of tin.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... in continuous hydrogen furnaces and batch hydrogen furnaces. The interest of the aerospace industries in structural ceramics centers on the potential application in gas turbine engines. The severe service conditions encountered within a gas turbine, and the desire of design engineers to increase operating...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
1